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DYNAMIC ANALYSIS 

A PARAMETRIC STUDY OF THE IBRAHIM TIME DOMAIN 
MODAL IDENTIFICATION ALGORITHM 

Richard S. Pappa 
Structural Dynamics Branch 

NASA Langley Research Center 
Hampton, Virginia 

and 

Samir R. Ibrahim 
Department of Mechanical Engineering and Mechanics 

Old Dominion University 
Norfolk, Virginia 

N86-13588 

The accuracy of the Ibrahim Time Domain (ITD) identification algorithm in 
extracting structural modal paraters from free-response functions has 
been studied using computer-simulated data for 65 positions on an isotropic, 
unifow-thickness plate, with mode shapes obtained by NASTRAN analysis. 
Natural frequencies, damping factors, and response levels of the first 
15 plate modes were arbitrarily assigned in forming the response functions, 
to study identification results over ranges of modal parameter values and 
user-selectable algorithm constants. Effects of superimposing various 
levels of noise onto the functions were investigated in detail. A partic- 
ularly interesting result is that no detrimental effects were observed 
when the number of computational degrees-of-freedom allowed in the algo- 
rithm was made many times larger than the minimum necessary for adequate 
identification. This result suggests the use of a high number of degrees- 
of-freedom when analyzing expermental data, for the simultaneous identifi- 
cation of many modes in one computer run. Details of the procedure used 
for these identifications are included. 

I 

INTRODUCTION 

A fundamental problem in experi- 
mental structural dynamics is the accu- 
rate determination of parameters 
characterizing the important vibration 
modes of a test structure. These pararn- 
eters--natural frequencies, damping 
factors, and mode shapes--are used for 
a variety of purposes, including: 

1. trouble-shooting excessive 
vibration or noise from mechan- 
ical equipment; 

2. dynamic analysis of portions 
of a structure that are too 
difficult to model analytically; 

3. refinement or verification of 
an analytical model; and 

4. direct calculation of dynPmic 
loads or response levels that 
a structure may experience 
during operation. 

An additional future use of experimen- 
tally determined modal parameters, of 
current research interest to NASA, is in 
the active attitude control of large 
space structures. 

Obviously, the applications and 
corresponding accuracies which are re- 
quired of these data vary considerably. 
Results adequate for one use may be un- 
acceptable for another. In addition, 
accuracy requirements for particular 
applications may be difficult to quantify 
ar.d may be subject to error. Establish- 
ing the adequacy of experimental mota1 
data still often includes a judgement 
of whether the nost accurate set of data, 
within an allocated period of time, has 
been obtained. 

Before the widespread use of mini- 
computers in the laboratory, modal test- 
ing and analysis were conducted almost 
exclusively with analog instrumentation. 
As the advantages of digital computation 

43 



because apparent, many data analysis 
techniques that had been developed on the 
analog systems were simply converted 
to their digital counterparts. These 
techniques are, in fact, otill used today 
in successfully measuring the dominant 
modal patterns of "well-behaved" struc- 
tures. Accompanying the conversion to 
digital-based laboratory equipment was 
an increased use of random force, as 
opposed to sinusoidal force, for exciting 
test structures. This trend was closely 
related to the revolutianary switch in 
the late 1960's to fast Fourier trans- 
form (FFT) methods for rapidly computing 
frequency-domain characteristics of ran- 
dom response signals. Although mary 
structures are still tested with the 
classical multiple-shaker, sine-dwell 
approach, the majority of experimental 
dynanists now select the faster random- 
force methods for modal testing. 

A standard step in the data-reduc- 
tion phase of most modal test programs 
is the computation of frequency-domain 
characteristics of the measured struc- 
tural responses. In controlled ground 
vibration tests where the input force(s) 
as well as the responses can be accurate 
ly measured, acceleration/force frequency 
response functions are usually formed: 
in cases where the input forces cannotbe 
measured, the response information alone 
is used. Many single- and multi-degree- 
of-freedom algorithms have been developed 
to identify the structural modal paran- 
eters by curvefittin analytical exprer.- 
sions to these data 711. Single-degree- 
of-freedom methods use a few data points 
near each resonarrt frequency for quickly 
estimating the modal parameters of one 
mode at a time. Because in these tech- 
niques it is assumed that the overall 
response near each resonance is dominated 
by the characteristics of a single mode, 
however, the degree of modal coupling in 
any frequency interval significantly 
affects identification results. On the 
other hand, multi-degree-of-freedom algo- 
rithms, developed to identify the param- 
eters of several modes simultaneously, 
nearly always work well on data that can 
be reasonably analyzed with single-iegree- 
of-freedom methods, but may differ appre- 
ciably in more difficult cases. 

Various aspects of using time- 
domain response data rather than frequan- 
cy-domain functions in the experimental 
modal identification of structures excit- 
ed by random forces(s1 nave been dis- 
cussed pr?viously by Ibrahim [2 -€1 .  
early multi-degree-of-freedom time-domain 
identification procedure [2] required 
numerical integration (assuming the 
measurement of acceleration respofises) 
to obtain displacement and velocity time 

A n  

histories at each response measurement 
point, in addition to the measured ac- 
celeration time histories. This approach 
was later abandoned in favor of a more 
straightforward method [3] in which any 
one of displacement, velocity, or ac- 
celeration free-response functions are 
used in an eigenvalue solution scheme 
to obtain the desired modal parameters. 
This newer procedure is referred to in 
this paper as the ITD ("Ibrahim Time 
Domain") algorithm. The term "free- 
response" function is used throughout 
this paper to denote any of three time 
response forms which may be used in the 
identification algorithm: actual free- 
decays measured following random excita- 
tion of a structure: unit-impulse- 
response functions formed by inverse 
Fourier transformation of frequency 
response functions: or "random-decrement" 
functions [ 4 ]  computed from randon: 
operating time histories. 

to analyze test data from several struc- 
tures [7,eg]. As now implemented, the 
identification process is a "blind" tech 
nique, requiring a minimal amount of 
operator input to compute parameters 
for many modes from a set of free- 
response functions. A large number of 
structural modes, often 20 or more, are 
identified in a single computer run. In 
general, the parameters computed for the 
dominant modes of these structures agreed 
well with those obtained by othermethods 
Parameters for modes identified by the 
ITD analyses, but not determined with 
other analysis methods, however, lacked 
verification and their accuracy was 
rightfully questioned. 

The ITD algorithm has been used 

The work reported in this paper was 
initiated to help interpret these experi- 
mental results. For this study, compu- 
ter-simulated free-response data, for 
linear, multi-mode models with known 
modal i)armeters, were processed with 
the ITD algorithm. The identified para 
meters were used to quantify ~e ability 
and accuracy of the identification pro- 
cess , to look for anomalous numerical 
behavior under severe identification 
conditions, and to compare results for  
ranges of the few user-selectable algcr 
rithm constants. The modeling approach 
consisted of constructing free-response 
functions for 65 positions on an isotro- 
pic, uniform-thickness rectangular plate 
by the linear summation of the free-res- 
ponses of the first 15 analyticai modes. 
The mode shapes were obtained from a 
finite-element analysis, and modal fre- 
quencies, damping factors, and response 
levels were arbitrarily assigned for 
each desired modal model. Various 
levels of noise, calculated on an rms- 
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percentaqa b a s i s ,  were superimposed 
on to  t h e  f ree- response  func t ions .  

f r e e  sets o f  f ree- response  f u n c t i o n s  
from exper imenta l  measurementi, an 
impor tan t  phase i n  the modal i d e n t i f i -  
c a t i o n  p rocess  when t h e  ITD a lgo r i thm 
is used, are n o t  addressed i n  this papez  

Somewhat new terminology is used i n  
d e s c r i b i n g  t h e  a lgor i thm.  To avoid  con- 
fus ion  i n  c o r r e l a t i n g  the  i d e n t i f i -  
c a t i o n  r e s u l t s  w i t h  the usage o f  t h e  
free-response data i n  t h e  procedure,  
complete d e t a i l s  of  t h e  technique  are 
included.  The methods use6 i n  con- 
s t r u c t i n g  the f ree- response  f u n c t i o n s  
and i n  quan t i fy ing  t h e  accuracy o f  
i d e n t i f i e d  mode shapes are desc r ibed  
i n  t h e  f o l l w i n g  r e p o r t  s e c t i o n s .  The 
remainder o f  t h e  r e p o r t  c o n t a i n s  a sum- 
mary of  t h e  i d e n t i f i c a t i o n  r e s u l t s .  
These d a t a  i l l u s t r a t e  t y p i c a l  i d e n t i f i -  
c a t i o n  a c c u r a c i e s  over  a wide range o f  
s imula ted  m o d a l  models and user -se lec-  
table a lgo r i thm cons tan t s .  

Techniques f o r  o b t a i n i n g  d i s t o h i o n -  

LIST OF SYMBOLS 

f k  

f X 

f l r  

i 

k 
X 
m 

j 

Po 

S 

ti T 

k ' t h  complex e igenvalue  of [A] 
the *sys temo matrix 
Transpose of  [A] 
a damping c o e f f i c i e n t  
damping f a c t o r  ( f r a c t i o n  of  
c r i t i ca l  damping) of k ' t h  
mode 

frequency cor respondin  to  
k ' t h  e igenvalue  of  [ A I  

m u l t i p l e s  of t h e  frequency 

* fo ld ing  frequency" based 
on ( A t 1 1  

measurement s t a t i o n  index 
t i m e  index 
mode index 
a s p r i n g  cons t an t  
number of assumed modes 

(= NWF) 
a mass 
number of time samples cor-  

responding t o  ( L t )  1, ( A t )  2 ,  
and (At13 

number of  response measureme- 
a v a i l a b l e  

number of t ime samples i n  
each f ree- response  func t ion  
(= NCOL) 

time i n s t a n t  j 
to ta l  time l e n g t h  of  response  

func t ions  
f ree- response  of s t a t i o n  i 

a t  t ime i n s t a n t  j 
t i m e  increment between t h e  two 

response ma t r i ces ,  [O] and 

t i m e  increment i n  forming 
" t ransformed s t a t i o n s "  

1 / ( 2 ( ~ t ) j )  

[*I 

t i m e  increment  between d a t a  i n  
upper and lower ha lves  o f  t h e  
response m a t r i c e s  

an  a r b i t r a r y  time increment  
a small u n c e r t a i n t y  i n  a n  

e igenvalue  de t e rmina t ion  
angu la r  p o s i t i o n  o f  k ' t h  

e igenva lue  i n  t h e  a-b p lane  
c h a r a c t e r i s t i c  va lue  o f  mode k 
a mat r ix  o f  complex exponen- 
t i a l s  

damping va lue  o f  k ' t h  mode 
( 0  real p a r t  o f  c h a r a c t e r i s -  
t i c  va lue )  

damping va lue  o f  k ' t h  mode 
us ing  a l t e r n a t e  method 

response ma t r ix  whose r o w s  
c o n t a i n  t h e  f ree- response  
f u n c t i o n s  

The [ O ]  m a t r i x  de layed  ( A t 1 1  
complex e i g e n v e c t o r  o f  mode k 
m a t r i x  whose columns are t h e  

sys tem's  e i g e n v e c t o r s  
t h e  [?] ma t r ix  wi th  responses  
delayed ( A t )  1 

damped n a t u r a l  f requency of  
k ' t h  mode (= imaginary p a r t  
of  c h a r a c t e r i s t i c  va lue )  

undamped n a t u r a l  f requency of  
k ' t h  mode 

Abbrevia t ions  

ITD Ibrahim Time Domain ( technique)  
MAR Modal Amplitude Ratio 
MCF Modal Confidence F a c t o r  
Mscc Mode Shape C o r r e l a t i o n  Constant 
NCOL N u m b e r  of Columns i n  [ @ ] a n d  

NST Number of (measurement) 
181 
S t a t i o n s  used i n  c a l c u l a t i o n  
of  OAMCF 

OAMCF Overa l l  Modal Conf idenceFactor  
RMS Root-Mean- Square (va lue )  
SF data Sampling Frequency 

(= r e c i p r o c a l  of  time in te rva l  
between data samples)  

THEORY OF THE IDENTIFICATION TECHNIQUE 

The Eigenvalue S o l u t i o n  Approach 

The c h a r a c t e r i s t i c  equa t ion  f o r  a 
c l a s s i c a l  single-degree-of-freedomstruc- 
t u r a l  system, governed du r ing  i t s  f r e e  
response  by 

M f + C ; + K x = O  (1) 

is A2 M + X C + X = 0 ,  and t h e  g e n e r a l  
s o l a t i o n  form is x ( t 1  = JI eAt. For  an 
overdamped s y s t e n ,  Jt and A a r e  bo th  
rea l -va lued;  f o r  an ur.derdamped system, 
they  are complex, o c c u r r i n g  i n  conjugate  
p a i r s .  

I n  t h e  more common underdamped case,  
t h e  r o o t s  of t h e  c h a z a c t e r i s t i c  equa t ion  
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a r e  X = o -+ i Wd, where Wd is t h e  
damped n a t u r a l  frequency i n  radians/sec-  
ond, w n  = /a2 + ud2 the undamped natu-  
r a l  frequency, and - O/yn t h e  damping 
f a c t o r  or f r a c t i o n  of c r i t i ca l  damping, 
c/cc. 

For  a linear multi-degree-of-free- 
dom s y s t e m  wi th  m excited modes, t h e  
f r e e  response o f  t h e  s t r u c t u r e  a t  any 
(measurement) s t a t i o n  i and i n s t a n t  of 
time t j  can be expres sed  by t h e  sum- 
mation of t h e  i n d i v i d u a l  response o f e a c h  
mode a s :  

k= 1 

where # ik  and Ak are bo th  complex 
numbers, i n  gene ra l .  Note t h a t  t h e  sum- 
mation ex tends  t o  2m s i n c e  t h e r e  are 
2m r o o t s  of  t h e  c h a r a c t e r i s t i c  e q u a t i o n  

Free-response va lues  f o r  2m sta- 
t i o n s  and s i n s t a n t s  of t i m e ,  Calcu- 
l a t e d  us ing  Eq. ( 2 ) ,  c a n  be arranged 
i n t o  ma t r ix  form as: 

2 m ,  1 

... 

... 

... 

1 1 2  

$22 

... 

... 

... 

... e i l t 2  

X 2 t 2  e ... 

... 

1% e 

e X2ts 

' 2 m t s  e 

X 

o r  simply 

( 2 m  x s) = ( 2 m  x 2m) ( 2 m  x s) 

S i m i l a r l y ,  f ree-response v a l u e s  ( A t )  1 
l a t e r  i n  t i m e  t han  t h o s e  i n  Eq. ( 2 )  , 
measured a t  t h e  same s t a t i o n s ,  can be 
expressed a s  : 

k= 1 

k = l  

o r ,  in mat r ix  form, f o r  2m s t a t i o n s a n d  
s i n s t a n t s  o f  t i m e :  

[01 = [GI [AI (6) 

(2m x s; = ( 2 m  x 2m) (2m x s) 

For s > =  2m, [ Y ]  and [i] a r e  
r e l a t e d  t h r o u  h Eqs. ( 4 )  and (6), 
e l i m i n a t i n g  ?:,II by: 

where 

[$IT [AIT = [0IT ( 8 )  

Since  t h e  columns o f  [ Y ]  and [ i ]  a r e  

r e l a t e d  from Eq. ( 5 )  by 
{Yjk, t h e  complete system can now be 
placed i n  t h e  form of  a s i n g l e  eigenvalue 
problem a s :  

A k  ( A t )  1 {tJk = e 

The ma t r ix  [ A I  is r e f e r r e d  t o  i n  t h i s  

t a i n s  in fo rma t ion  c h a r a c t e r i z i n g  t h e  
complete set of modal parameters  of t h e  
system. 

( 3 )  paper a s  t h e  "system m a t r i x , "  and con- 
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The desired structural (damped) 
natural frequencies and damping factors 
are determined from the eigenvalues of 

1 -1 (udlk = 2r fk = tan (bk/alr.) 

The eigenvectors of [A] are the 
desired (complex) structural mode 
shapes, {$Ik. 

Equations :8)  and (9) fonnthe 
basics of the solution approach: free- 
response function? are laced into the 
rows of O and 0; [APT is obtained 
by a least-squares solution of Eq. (8); 
and the complex eigenvalues and eigen- 
vectors of [A] are then found, to 
which the system's modal parameters 
are directly related. 

to throughout this paper as the "number 
of allowed (computarional) degrees-of- 
freedom," NDOF. This term should not 
be confused with the more widely used 
meaning of "degrees-of-freedom" as 
the number of independent spatial coor- 
dinates necessary to define the motion 
of a Fystem. The "number of assumed 
modes" or the "order of the math model" 
are other descriptors that have been 
used to denote this fundamental analysis 
constant. The matrix dimension Is,' 
the number of columns in [e] amd 111 
(i.e., the number of time samples used 
from each free-response function), is 
referred to throughout as NCOL. The 
matrices [O] and [ 6 ]  are referred 
to as the two "response matrices." 

Three distinct, user-selectable, 
time shifts are used in positioningover- 
lapping segments of the measured free- 
response functions into the rows of the 
response matrices. The fundamental time 
increment between all data placed into 
[0] ' and [ a ]  is (At)l. Two other 
time shifts, denoted by (At12 and 
(At)?, will be discussed in the report 
section entitled "Transformed Stations 
and Modai Confidence Factors." The 
number of cmsecutive time samples 

The dimension Om' is referred 

corresponding to each of the shifts 
will be denoted hereafter by simply 
N2, and N3, respectively. 

Figure 1 provides an example of 
the placement of free-response data into 
the two response matrices, assuming that 
three response functions are available. 
In this example, NDOF and NCOL are se- 
lected equal to 7 and 30, and the three 
data shifts, Nl, N2, and N3, are 3, 
8, and 4. This figure should be used as 
a reference in clarifying the definition 
of each of these five primary user- 
selectable analysis constants. 

N1, 

Solution Considerations 

Equations ( 8 )  and (91 are forms 
whose computer solution have been studied 
in depth by numerical analysts. Eq. (8) 
is an over-determined system of simulta- 
neous linear equations, and Eq. (9 :  is 
an algebraic eigenvalue problem, wherz 
the (am) eigenvalues of [ A ]  are 

e and the corresponding eigen- 
vectors are { t>lk ,  

The "conventional transpose ap- 
proach" of solving Eq. (8) consists of 
pre-multiplying both sides by [O] and 
then solving for [A]T by any of several 
methods for the solution of 2m simulta- 
neous linear equations in 2m unknowns. 
This is the approach used for the results 
shown in this paper. In particular, pre- 
multiplying Eq. ( 8 )  by [e] results in: 

Ak(dt) 1 

Equation (11) was then solved by a stan- 
dard Gaussian elimination subroutine 
using an LU decomposition of the 
( [e ]  [#IT) matrix of coefficients. 

Other methods are available for 
solving Eq. ( 8 )  which do nct require 
the pre-multiplication of each side by 
[O], [ 0 , 9 ] .  These methods have been 
developed fo r  the exprese purpose of in- 
creasing the so'ution accxacy when the 
matrix of Coefficients, in this case 
[@]TI is ill-conditioned; the pre- 
multiplication will increase any ill- 
conditioning of the coefficient matrix. 
A limited number of comparison identifi- 
cations have been run using two other 
computer subroutines available for the 
solution of Eq. (8), namely: 

1. by singular value decomposition 
of the coefficient matrix using 
Householder transformations, 
obtaining the isometric satrix 
[U] and orthogonal matrix [VI, 
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such that [@IT=[U] [Q] [VJT, where 
the singular values comprise the 
diagonal mdtrix [Q]. The least- 
squares solution is then formed 
by [A]T=[V] [at: [U]T[eIT, where 
[Qt] contains the reciprocals Of 
the non-zero values of [a] .  

2. by using Householder trans- 
formations to perform the QR 
decomposition of the coef f i- 
cient matrix, where [Q] is 
an orthogonal matrix and [R] 
is an upper triangular matrix. 
The least-squares solution is 
then formed as [AIT= [QlIT 
[ @ I T I  where [Q] is partitioned 
in the form [O]=(Ql,Q2) with 
[$lTa[Q1l [RI - 

In all cases run using these other mathods, 
no changes in the computed modal param- 
eters were observed to the precision used 
in printing the results shown in this 
paper. On the other hand, each of the 
two methods described above required 
considerably more computer memory to 
implement using available FORTRAN sub- 
routines than the conventional transpose 
ap roach. In both cases, the [&IT and 
[OPT matrices--each of size (s x 2m)-- 
needed to reside in core, whereas the 
transpose method was implemented with 
two matrices of order 2m each. ?or 
a typical s/2m ratio of 3 used in many 
of the identifications, selection of 
either optional solution method required 
a factor of 6 times more core storage. 

The details of available tech- 
niques for the solution of Eq. ( 8 )  are 
compiled in several numerical analysis 
textbooks [ 8 , 9 ] .  A subroutine pack 
containing 2 standardized set of computer 
code for implementing these methods is 
avaiiable [lo]. 

The numerical techniques for solving 
Eq. (9) are not as plentiful; the QR 
method advocated by Wilkinson [8,11], 
is the accepted approach for determining 
the complete set of real and complex 
eigenvalues and eigenvectors of [ A ] ,  
a fully-popuLated general matrix with 
real elements. This is the method used 
to obtain all results presented in this 
paper. A subroutine pack [12] con- 
taining standardized code for the com- 
puter solution of eigenvalue problems 
is also available. 

"Transformed Stations" and 

"Modal Confidence Factors" 

Two aspects of the practical imple- 
mentation of the nrthod described thus 
far, which have been discussed in pre- 
vious papers [ 2 , 3 , 51 , are : (1). process- 
ing data when the number of available 
free-response measurements is less than 
the number of rows in [0] (equal ta 
twice the number of degrees-of-freedom 
desired in the identification process) , 
and (2) distinguishing those eigenvalues 
of [ A ]  corresponding to the desired 
structural modes from those eigenvalues 
corresponding to "noise modes , " computed 
whenever NDOF is larger than the number 
of struct%Lral modes contributing to the 
responses. 

ments that are available, say pol is 
less than the number of computational 
degrees-of-freedom which are desired, 
fewer than half the rows of [O] are 
filled by the original, unshifted, 
response functions. Under these circum- 
stances, "assumed" o r  "transformed" 
stations [2] are created for the addi- 
tional rows of both response matrices 
by simply shifting the original functiom 
placed iri the first po rows by multi- 
ples of a second user-selectable time 
shift, (Atl2: (At)2, 2(At)2, 3(At)2, 
etc., until the upper halves of both 
matrices are filled. This process of 
adding transformed stations does not 
mathematically affect the eigenvalues of 
the system matrix, [ A ] ,  assumingperEect 
identification. (If NDOF is selected 
smaller than PO, only NDOF of the 
available response functions are used in 
the analysis. ) 

response matrices are formed by duplicat- 
ing the upper rows, but delaying an 
additional user-selectable time shift, 
(At)3. The rationa7.e for filling only 
the upper halves of the matrices with 
the available response functions (and 
transformed stations) and filling the 
bottom halves with a time-shifted form 
of the upper halves is based on the cal- 
culation of "Modal Confidence Factors, 'I 
to be discussed next. 

When the number of responsemeasure- 

The bottom halves of the two 

If two segments of a free-response 
function obtained from the same measure- 
ment station, but separated by an 
arbitrary time interval AT, are placed 
into different rows of the response 
matrices, the elements in each computed 
eigenvector of [A] corresponding to 
these two rows, vlk and Q+lk, will be 
related (again assuming perfect identifi- 
cation) by : 
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for each linear structural mode 

This fundamental property, 
and the time-shift relationship 
the data in the upper and lower 

(12) 

k. 

E¶- (121, 
between 
halves 

of the response matrices, ( A t )  3, are 
used in the calculation of "Modal 
Confidence Factors," MCF [SI, devised 
to distinguish "noise modes* from the 
desired structural modes. The (complex- 
valued) MCF's for accurately identified 
linear structural modes--one MCF cal- 
culated for each of the first po ele- 
ments in each corn uted (complex) 
eigenvector of [AP--will cluster near 
unity in amplitude and near Oo in phase; 
those calculated for "noise modes" 
will be randomly distributed in value. 
To form the MCF's, the first po ele- 
ments in the lower halves of the com- 
puted eigenvectors are coripared with 
"expected" values for these elements, 
calculated using Eq. (12) by the product 
of the corresponding po upper-half 
eigenvector elements and the complex 

exponentials, e , where Xk are 
the computed characteristic values. The 
MCF is c'.efined as the amplitude ratio and 
phase difference between each of these 
"expected" values and the corresponding 
values computed by the ei envalue 

taken. The phase angle is normalized to 
range between -1800 and 1800. Obtain- 
ing MCF values near 100% in amplitude 
and Oo in phase is certainly a necessary 
(but not sufficient) condition to indi- 
cate that an accurate identification of 
a linear structural mode of the system 
has been made. 

This process can be thought of as 
the comparison of two sets of eigen- 
vectors, corresponding to the same set 
of eigenvalues, computed simultaneously 
for the system using two different 
segments of the available free-response 
functions. An important user advantage 
in obtaining both sets of eigen-Vectors 
in one eigensolution is that no effort 
is needed to "pair up" corresponding 
eigenvectors if somewhat different 
eigenvalues are computed for each set of 
segments. A single eigenvalue set is 
obtained using information derived from 
both sets of data, and the two eigen- 
vector sets are correctly compared in the 
computer analysis with no user decisions 
required. 

for each of the po stations, for each 

Xk(At)  3 

analysis. If the mplitu x e ratio is 
.greater than 1.0, the reciprocal is 

An MCF is calculated in this manner 

identified complex eigenvalue. To com- 
pact this information to a more manage- 
able level, an "Overall MCF," OAMCF, is 
calculated for each "mode" (that is, for 
each computed complex eigenvalue) as the 
percentage of po stations whose MCF 
values are at least 95% in amplitude and 
within 100 of 0.0 in phase. The OAMCF 
parameter, introduced for this study,has 
been found very effective in distinguish- 
ing the desired structural modes from the 
"noise modes," and is a fundamental part 
of the identification results presented 
in this paper. Its value has been found 
to provide a good characterization of the 
po MCF's calculated for each mode and, 
in general, a closer examination of the 
individual station-by-station MCF data 
was unnecessary. 

selected equal to either (At11 or 
(At!2. If equal to (At)lf all MCF's 
will be computed as 100% in amplitude and 
0 0  in phase, and be of no use. If 
equal to (At)z, and at least one trans- 
formed station has been usedf [Q] and 
[ $ ]  will each have two identical rows 
and Eq. ( e )  cannot be solved. Setting 
(At13 equal to one-half the value of 
(At) 2 has been found satisfactory in 
most cases. To clarify the relationship 
between these time shifts, refer again 
to Fig. 1, which shows a typical place- 
ment of data into the response matrices 
when three free-response functions are 
used. 

The time shift (At13 should not be 

CONSTRUCTION OF THE SIMULATED 
FREE-RESPONSE FUNCTIONS 

Node shapes used in constructing 
the simulated free-response functions 
were obtained from a NASTfiAN finite-ele- 
ment analysis of an isotropic, uniform- 
thickness plate with 8 x 24 square ele- 
ments. Data for 65 stations were obtain- 
ed by using the analytical mode shape 
data (for motion normal to the plate 
only) from every other grld point in 
both directions, including the outside 
border. The first 15 modes of this 
analysis were used in forming the 
responses. For each desired modal model, 
a damped natural frequency, damping 
factor, and response amplitude were 
arbitrarily selected for each mode. The 
effects of randomizing the initial phzse 
angle for all stations of each mode and 
of selecting other than 00 or 180° be- 
tween the stations in a mode (i.e., 
complex modes) were studied for several 
cases, and r.0 changes in the identifi- 
c3tion accuracy were noted. Thus, unlesr 
otherwise stated, the contribution of 
each mode in the responses was regresent- 
ed as a damped cosine function multiplied 
by an appropriate (positive or negative) 
mode shape amplitude constant. 
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That is, each free-response func- 
t i o n  was formed a s  

15 
x ( t  = ~l~~ e 

k= l  
i l  

(13) 

For t h i s  s tudy ,  each s imulatud 
free-response func t ion  c o n s i s t e d  of  
1000 d a t a  p o i n t s  ca l cu la t t l d  us ing  
Eq. ( 1 3 ) ,  a t  a sampling rate of  400 
samples p e r  second. Uniformly d i s t r i -  
buted n o i s e  was added t o  t h e s e  f u n c t i o n s  
on a function-by-function, rms-percentap 
b a s i s ;  w i th  t h e  m s  va lue  of  each noise- 
f r e e  f u n c t i o n  c a l c u l a t e d  us ing  a l l  lo00 
a v a i l a b l e  d a t a  p o i n t s .  The mode shapes 
used i n  forming each modal model were 
assigned t o  t h e  15  mode indices i n  t h e  
o r d e r  determined by t h e  f i n i t e - e l e m e n t  
a n a l y s i s .  

c a t i o n  r e s u l t s ,  t h e  modal f r e q u e n c i e s  
were a r b i t r a r i l y  s e l e c t e d  f o r  a l l  models 
i n  t h i s  s tudy  ( i . e . ,  t h e  n a t u r a l  f r e -  
quenc ie s  o f  t h e  p l a t e  o b t a i n e d  from t h e  
NASTRAN normal-mode a n a l y s i s  were n o t  
u sed ) .  Many o f  t h e  s imulated models 
were formed by spacing t h e  15 modal f r e -  
quencies  every 2 Hz from 10.0 t o  38.0 Hz, 
and s e t t i n g  t h e  modal Camping f a c t o r s  and 
response ampli tudes equa l  f o r  each o f  t h e  
modes. Each o f  t h e s e  b a s i c  modal 
models are c h a r a c t e r i z e d  by a s i n g l e  
m o d a l  damping f a c t o r  and n o i s e  per-  
centage,  and are r e f e r r e d  t o  throughout 
this paper f o r  simp1icit .y a s  " b a s e l i n e  
models. " 

For ease i n  i n t e r p r e t i n g  i d e n t i f i -  

EVALUATION OF IDENTIFICATION ACCURACY 

The accuracy of a l l  mode shape 
i d e n t i f i c a t i m s  f o r  t h i s  s t u d y  has  
been q u a n t i f i e d  by computing a "Mode 
Shape C o r r e l a t i o n  Cons tan t , "  MSCC, 
between t h e  i d e n t i f i e d  mode shapes and 
each of  t h e  15 i n p u t  mode shapes.  The 
c o n s t a n t  is c a l c u l a t e d  i n  a manner 
analogous t o  t h a t  of coherence,  o t t en  
computed i n  time-series a n a l y s i s  work. 
The f u n c t i o n a l  form is t h a t  o f  t h e  
square of t h e  c o r r e l a t i o n  c o e f f i c i e n t  
de f ined  i n  b a s i c  s t a t i s t i c s ,  computed 
between t w o  sequences of  complex numbers. 

i npu t  (comple?-) mode shape,  and { q  2 1  
is an i d e n t i f i e d  (complex! mode shape: 

Mathem?tically,  i f  is  a known 

where T deno tes  t h e  t r a n s p o s e  and 
t h e  complex conjugate .  

w i l l  always range from ,ere--for no 
resemblence o f  t h e  two shapes--to loo%--  
for p e r f e c t  resemblence.  v a l u e s  i n t e r -  
mediate between 0 .0  and 100.0 can be 
i n t e r p r e t e d  as t h e  amount of  cohe ren t  
information i n  t h e  two compared mode 
shapes.  

The accuracy of i d e n t i f i e d  f r e -  
quency and damping parameters  was 
as ses sed  by d i r e c t  o b s e r v a t i o n  on ly .  

The MSCC between two mode shapes 

RESULTS AND DISC'JSSION 

I n  p rocess ing  a set of  f r e e -  
response f u n c t i o n s  w i . i  t h e  i d e n t i f i -  
c a t i o n  a lgo r i thm,  f i v e  primary user-  
selectable c o n s t a n t s  must be  chosen. 
They a r e  NDOF, NCOL, ( A t ) l ,  ( A t ) 2 ,  
and (At )3 .  Secondary c o n s i d e r a t i o n s  
inc lude  t h e  s e l e c t i o n s  of  d a t a  sampling 
rate and analog or d i g i t a l  f i l t e r i n g  
r anges ,  t h e  p a r t i c u l a r  s ta t ions to  be 
analyzed i n  one computer run ,  and t h e  
a b s o l u t e  s t a r t i n g  times of  t h e  f r e e -  
response d a t a  ( i . e . ,  whether any d a t a  
p o i n t s  a r e  skipped a t  t h e  beginning of 
t h e  f u n c t i o n s ) .  An optimum s e l e c t i o n  of 
t h e  a n a l y s i s  o p t i o n s  is a f u n c t i o n  of 
t h e  c h a r a c t e r i s t i c s  of t h e  data being 
analyzed,  and "cookbook" i n s t r u c t i o n s  
are d i f f i c u l t  t o  develop. The r e s u l t s  
t o  be shown i n  t h i s  section, however, 
provide g u i d e l i n e s  f o r  t h e i r  s e l e c t i o n  
and f o r  judging t h e  s e n s i t i v i t y  of t h e  
cho ices ,  and i l l u s t r a t e  i d e n t i f i c a t i o n  
a c c u r a c i e s  which may be expected.  

A l l  r e s u l t s  shown i n  t h i s  paper  
were ob ta ined  us ing  a v e c t o r i z e d  v e r s i o n  
of  t h e  code on Langley 's  CRC Cyber 203 
(formerly Star-100)  computer. Typical  
CPU t imes  f o r  i d e n t i f i c a t i o n  were 1 5 s e c -  
onds f o r  NWF = 65 and NCOL - 390, and 
340 seconl - f o r  NDOF * 200 and NCOL = 
968. The r e q u i r e 6  computer t i m e  v a r i e d  
approximately a s  theAnumber of  coJumns 
used i n  [O] and [e ] ,  NCOL, and as 
t h e  squa re  of  t h e  number of  allowed 
computat ional  degrees-of-freedom, NWF. 

Some Base l ine  Model R e s u l t s  

F igu re  2 shows t h e  time- and f r e -  
quency-domain r e sponses  a t  measurcment 
S t a t i o n  No. 1 (a c o r n e r  of  t h e  p l a t e )  
f o r  t h r e e  of t h e  b a s e l i n e  models analyzed 
i n  t h e  s tudy .  I n  F igs .  2 ( a )  and 2 (b )  , 
t h e  damping t a c ' t o r ,  C/Cc, of  a l l  15 
modes was Set t o  2 % .  The m e  n o i s e  
l e v e l s  i n  t h e s e  two c a s e s  were 2 %  and 
209, r e s p e c t i v e l y .  S i m i l a r l y ,  F ig .  2(c) 
shows t h e  response o f  S t a t i o n  No. 1 w i t h  



all 15 modes assigned 5% damping and 
10% noise. The dashed lines on the 
time history piots designate the range 
of poincs used from each function in ITD 
analyxes whose results will be pre- 
sented in Table I and Figs. 3 througt, 3. 
The center and right-hand plots in 
Fig. 2 show the quadrature (imaginary) 
component and moi'ulus, respectively, of 
the Fourier transform of the correspond- 
iag free-response function. 

these three identifications calcu- 
lated between each of the 15 input mode 
shapes and each identified mode (whose 
OAHCF was 2% or larger), rranded to the 
nearest -.hole number. Also included 
are the identified frequencies in 
Hertz, the identified damping factors in 
percent, and tF? OAMCF for each mode. 
The column to the rigtt of the QAnCF 
data contains the number of stations of 
6 5 ,  NST, that were used in calculating 
the corresponding OAHCF value: only 
those stations with non-negligible 
modal response (at least 3% of the max- 
imum value of the mode) are included in 
the calculation. This 3% criterion was 
imposrl: on the calculation of OAMCF 
because nany of the selected 65 measure- 
ment stations were located exactly on 
d e  shape node iines; the variance in 
the calculated KCF data for these 
stations was generally high. as to be 
expected, because very small modal 
amplitudes identified for these stations 
were used in the calculations. Each of 
these identifications were run using 
NDOF of 65 and NCOL of 390. The other 
50 "modes" obtained in each identifi- 
cation were "noise modes," differentiated 
by low (<2%) OAMCF values. 

For these identifications, the user- 
selectable time-shift constants, (At) 1, 
(Pt12, and (At)3, were set to 3/'SF, 
0/SF, and 4/SF, respectively, where SF 
is the data sampling rate. The values 
N1 = 3 ,  N2 = 8 ,  N3 = 4 were used in 
obtainins a 1 identification results 
shown in this paper, unless otherdise 
noted. (These are the values selected 
for Fig. 1 in illustrating a typical 
olacement of free-respo,ise data into the 
two response matricec 

(com.,.l.exi mOGe shapes for the 2b-damping, 
2%-noise baseline moAel, corresponding 
to t1;e data contaiaed in Table I. These 
identifier? mode shapes are indistingcish- 
able from those used in constructing the 
model. Note that the ITD algorithm 
identifies complex mode shapes, consisting 
of a magnicude and phase at each saiected 
measurement station: the identified 
mode-shape phase angles are included 
adjacent to each mode shape, assigned by 

Table I contains MSCC values for 

Figure 3 shows the it; identified 
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consecutive station number from the 
center of the circle to the outer ring, 
as depicted in the lower-right corner of 
Fig. 3;  the data for the accompanying 
mode shape plots were obtained by the 
product of the identified mode-shape 
amplitudes and the cosine of the cor- 
responding 3hase angle. 

identified for :he two other baseline 
models whose results were in 
Table I, also using KDOF of 65 and NCOL 
of 390 in the analyses. As before, only 
those "modes" with an OAMCF of at least 
2% are shown. In Fig. 4 ,  for the 2%- 
damping, 20%-noise model, the identified 
shapes are also indistinguishable from 
the exact, input mode shapes, and the 
phase-angle scatter averages only a few 
degrees. Ide. iification results for the 
5%-damping, 10%-noise model, provided 
in Fig. 5, show mode shapes that are 
slightly distorted for modes 11 through 
14, with significant phase angle scatter 
i2 several of the modes. In interpret- 
in3 these rcsul ts, however, the reader 
is cautioned that more accurate ide1,:ifi- 
cations are ob,;ainabie for these models; 
as shown later, allowing higher degrees- 
of-freedom in the identification will 
increase the accuracy to some degree. 
These identificTtions all used NDOF of 
65 and NCOL 3f 290, and the results 
typify the effects of changing modal 
damping and noise level while holding 
all of the algoritktt constants fixed. 

Figures 4 rnd 5 show the modeshapes 

Note in Table I that an MSCC of 
100% was criculated for each cf the 
accurately identified mode shapes of the 
2%-darnping, 2%-noise baseline model, 
shown in Fig. 3. Also of interest in 
these MSCC results is the slight "blend- 
ing" of the higher-numbered mode shapes 
for the S%-damping, lO%-noise model, 
corresponding to the smail distortions 
seen in the plots in Fig. 5. 

The Nmber of Allowed Degrees-of-Freedom 

The number of computational degrees- 
of-freedom allowed in the identification, 
NDOF, shoQld be selected equal to the 
number of modes excited in the responses 
if the free-response functions are 
noise-free. For any deviation of the 
response data from the exact analytical 
form--that is, some level of super- 
imposed noise--more degrees-of-freedom 
than tt.is must be allowed for accurate 
identification. It is somewhat intuitive 
that better identification of the under- 
lying deterministic modal data may result 
when one allows for the calculation of 
extra "noise modes," in addition to the 
number of actual structrlral modes con- 
tributing t2 the responses, to provide 
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an outlet in the assumed clodel for the 
noise contribution. 

To illustrate the effect of increas- 
ing the allowed degrees-of-freedom, 
identified modal frequencies for the 
2%-damping baseline model, using values 
of NDOF from 1 to 75, are plotted in 
Figs. 6 and 7 for each of eight increas- 
ing levels of superimposed noise. At 
each value of NDOF, the identified fre- 
qaencies are denoted by vertical line 
segments at the correswnding frequen- 
cies, whose heights are proportior.al to 
the OAHCF value computod for each mode. 
As before, only those identified 'modes' 
with negligible OAMCF (less than 2%) are 
not shown. Whet1 the individual seg- 
ments align tG form a solid, vertical 
line, the OAMCF's are all 100% and the 
identified modal frequency is invariant 
with increasing NDOF. On examining 
these eight plots, a consistent trend 
in the requirement for increased 
degrees-of-freedom to accurately iden- 
tify all 15 frequencies, with increased 
noise level, is noted. Another interese 
ing trend is that after an NDOF level 
is attained for each noise level where 
all 15 frequencies are accurate, irrcreas- 
ing NIXIF above this value did not de- 
grade the frequency identification 
accuracy. These plots will be referred 
to as "NDOF-frequency maps," and have 
been found very useful in interpreting 
experimental identification results. 
The identifications at each NDOF level 
in Figs. 6 and 7 were run using NCOL 
of 300. 

The lowest value of NDOF for accu- 
rate identification has been found in 
this study to be related to the signal- 
to-noise ratios of the modal responses. 
The considerable shifting of the fre- 
quency "lines" in these NDOF-frequency 
maps at low values of NDOF results 
largely from setting all 15 modal 
response levels equal. when experi- 
mental data are processed, the lowest 
NDOF values for identification of each 
made vary considerably more between 
modes than the data shown in Figs. 6 
and 7, due to different response levels, 
and almost no line shifting occurs. 

Typical accuracy at much higher 
allowed degrees-of-freedom are included 
in Table I1 for the 2%-damping, 20%-noise 
baseline model with anaiyses at NDOF of 
65, 200, 250, and 300. These iden- 
tifications used all 1500 data points in 
each of the 65 response functions; that 
is, NCOL was made as large as possible 
in each case. Although the parameters 
for all 15 modes are of acceptabie 
accuracy for most applications at NDOF 

of 200, it is interesting that the 
accuracy (of the damping factors) con- 
tinued to increase as NDOF was raised 
beyond this point. Only those "modrs" 
with an OAMCF of less than 2% are ex- 
cluded from these results: at POOF of 
300, for example, 285 additional 
'noise modes" -re computed, a12 of 
which are differentiated by the OAMCF 
parameter. Also very important is that 
no anomalous identification problems 
or numerical instabilities were observed 
in this or any other identification con- 
ducted in this study using such high 
values of NDOP. These results suggest 
that the ITD algorithm, used with a high 
number of Cegrees-of-freedom, may accu- 
rately identify all of the excited 
structural modes, for large modal sur- 
veys, in one computer run. 

Note that the results shown in 
Table 11 for NDOF of 65 were not as 
accurate as those shown earlier in 
Table I for analysis of the - -.e 2%-damp 
ing, 20%-noise baseline model; the re- 
sults in Table I were obtained usinc 
NCOL of 390 and those in Table 11 with 
NCOL of 993. The effects of the selec- 
tion of NCOL on identification accuracy 
will be addressed in a later report 
section. 

The Selection of (at) 
~~ ~ 

To help understand the effects of 
the user-selectable algorithm constant 
(At11 (the time increment betiieen cor- 
responding data in the two response 
matrices), note from Eq. (9) that the 
computed eigenvalues of [A ] ,  ak + ibk, 
are exponential functions of the product 
of the system's characteristic values, 
Xkr and (L.t)l. The desired structural 
modal frequencies and damping factors 
are then calculated directly from these 
eigenvalaes by Eqs. (10)- Using these 
relationships, loci of constant damping 
factor are plotted in Fig. 8 in the com- 
plex a-b piane, for fd = ud/(Zn) 
ranging from 0 to 1/(2!At)l). A typical 
eigenvalue of [A] is denoted by point 
'k,' whose corresponding natural fre- 
quency in radians/sec is simply the 
angle Qi( divided by (Atll. Since 
equal damping values, gk, lie on equal 
radii in the a-b plane, by Eq. (101, 
the contours of constant damping fact;r 
(equal to the damping -7alue divided by 
the undamped natural freq :ency; will con- 
verge tc the point (1,O) for fd = 0 
and separate from one another as fd 
increases. As C/Cc increases, the 
contours lie inside one another, until, 
at loo%, the locus is simply thepositive 
x-axis. 

The frequency in Hertz correspond- 
ing to Qk * n ,  denoted as f,, is the 
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point at which the identified fre- 
quencies will 'fold" because of the 
circular nature of the exponential func- 
tion--analogous to the well-known 
'Nyquist folding-frequency" which results 
from the circular nature of the discrete 
Fourier Transform. That is, all iden- 
tified frequencies will fall in the 
range J to f,, regardless of their 
actual value; only those modal fre- 
quencies no larger than f, will be 
correctly calculated. The v a l u  of f, 
is simply 1/(2(At)l). Of course, 
this 'eigenvalue aliasing' will lead to 
erroneous frequency atid damping factor 
results for modes with frequencies 
greater than f, contributing to the 
response functions used in the identi- 
fication; as with the veil-understood 
Nyquist-frequency alaasir.g, however, 
the phenomenon can also be used bent- 
ficially, with the results accordingly 
adjusted, if the data are pre-filtered 
to contain information only in a cert- 
ain, known frequency interval. 

[A] separated by E ,  any inaccuracy 
in their calculation may translate to a 
considerable inaccuracy in their cor- 
responding modal frequencies and damping 
factors, depnding onthe location in the 
a-b plane. To quantify this character- 
istic, Fig. 9 provides contours of mini- 
mum and maximum percent deviation in the 
identified modal frequencies and damping 
factors for three magnitudes of uncer- 
tainty in the eigenvalue determinatian. 
Note, in Fig. 9(a), that percent fre- 
quency deviations are neai-ly independent 
of damping level, and are large only for 
values less than 0.1 fn (because the 
data are shown on a percent-deviation 
basis, and f is small in this range). 
Fer all three uncertainty levels, the 
percent frequency deviations are no 
greater than 2% at all frequencies at 
least 0.2 f,, Cor C/Cc 10%. The 
envelopes of maximum perzent deviation in 
the damping factor identification, onthe 
other hand, are considerably larger, as 
shown in Fig. 9(b). These data suggest 
that dampin factors derived from eigen- 
values of 4 A] subtending small angles 
in the a-b plane may be subject tc 
apprrcj able error. 

Obviously, for two eigenvalues of 

As (At11 increases, the fre- 
quency interval corresponding to eigen- 
values located at ok = 0 and Qk = n 
decreases, and the eigenvalues for any 
two modal frequencies separzte in the 
a-b plane. When this occurs, a more 
accurate analysis generally can be made 
of a smaller total frequency interval. 
Figure 10 shows typical results of this 
effect in the identification of the 
2%-damping, 20%-noise baseline model for 

two selections of 31 (the number of data 
samples corresponding to the time-shift 
interval (Atll). The results in 
Fig. 10(a) were obtained with N1 = 1 
and those ir. Fig. 10(b) with N1 = 3, 
holding all other algorithm constants 
unchanged. In the polar plots of 
Fig. 13, the symbols denote the loca- 
tions of all identified eigenvalues of 
[A] in the a-b plane; the eigenvalues 
corresponding to the 15 structural modes, 
distinguishable from the "noise modes" 
whose OAHCF's were ail less than 2%. 
lie approximately equally spaced along 
the 2%-damping (dashedlline in each 
fistare. -9s shown in the tabulated re- 
sults, the identification accuracies of 
both damping factors and mode shapes 
were improved when N1 was increased 
from 1 t o  3. 

An Alternate &tho<! for 

Calcalatxg Modal Damping 

In al3ition to the straightforward 
calculation method for the desired modal 
damping factors using the eigenvalues of 
[A], shoNn in Eq. (lo), limited study has 
beer. d m e  of an alternate method using 
the first po elenents in the uppsr and 
lower halves of the computed eigen- 
vectors--data used previously in comput- 
ing the HCF values. Based on experience, 
the identified damping factors often show 
th? greatest variance of all the computed 
modal parameters. By assuming that the 
eigenvector data are more accurate than 
the identified damping data, a method 
similar to the reverse process used in 
computing the MCF data can be used to 
obtain a second estimate of :he m d a l  
damping factors. 

Mathematically, a form analocous to 
that for obtaining the amplitude of a 
frequency rPsponse function using the 
Fourier components of input and response 
signals can be used to compute an average 
modal amplitade ratio Setween the 'upper' 
and 'lower,' po-element, mode shape 
vectors. In particular, if { ~ u I  is an 
upper identified (complex) mode shape, a d  
{1(1 ) is a lower identified (complex) 
moie shape, a Xodal Amplitude Ratio (MAR) 
can be calculsted as: 

from which an alternate modal damping 
factor can be calculated, using the cor- 
responding damped natural frequency, d , 
obtained directly from the eigenvalue o$ 
[A] , by: 
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(c/cc)k 5 Ok2 += 
where Ok2 = ln(MAR)/(Jt)  3. 

This  estimate of  m o d a l  damping was found 
more a c c u r a t e  i n  many cases--but n o t  
a l l - - p a r t i c u l a r l y  f o r  mdes * i t h  pcor 
s igna l - to -no i se  ratios. F i g u r e  11 
shows modal damping f a c t o r s  i d e n t i f i e d  
by each o f  the  two methods f o r  t h e  
20-damp~.ng, SO%-noise baseline model f o r  
N W F  i n  s t e p s  of  20 from 60 to  200. 
Only data for the f irst  10 modes are 
included. Although the d a t a  f o r  modes 1 
and 2 (circle and squa re  symbols) are 
s i g n i f i c a n t l y  over-estimated by e i t h e r  
method, overall, t h e  d a t a  i n  Fig.  l l ( b ) ,  
ob ta ined  i n d i r e c - l y  us ing  t h e  eigenvector  
and i d e n t i f i e d  frequency d a t a ,  c l u s t e r  
apprec i ab ly  closer to t h e  t r u e  va lue  of 
2 %  than t h e  d a t a  i n  Fig. l l ( a ) ,  cal- 
c u l a t e d  d i r e c t l y  from the  e igenva lues  
of [A] .  

using t h i s  a l t e r n a t e  method, an HSCC 
between t!.2 upper and lover po-element 
vectors used i n  t h e  c a l c u l a t i o n  should 
a l s o  he formed t o  be used as  an ind i -  
c a t i o n  of t h e  cons i s t ency  of  t h e  eigen- 
v e c t o r  d a t a ,  which may itself be inaccu- 
r a t e .  A conse rva t ive  approach would 
c e r t a i n l y  be to  c a l c u l a t e  t h e  d m p i n g  
f a c t o r s  by bo th  methods, and use  any 
discrepancy i n  t h e i r  va lues  a s  a i n d i -  
c a t o r  of i n a c c u r a t e  i d e n t i f i c a t i o n .  
Urless o the rwise  noted, t h e  damping 
i d e n t i f i c a t i o n  r e s u l t s  shorn i n  t h i s  
paper were ob ta ined  using t h e  d i r e c t  
c a l c u l a t i o n  method from t h e  e igenva lues  

When the modal damping is c a l c u l a t e d  

of [ A I .  

Modal Response! Level 

I n  ali i d e n t i f i c a t i o n  r e s u l t s  pre- 
s en ted  t h u s  f a r ,  t h e  response l e v e l s  of  
a l l  15 modes in t h e  s imula t ed  modeiswer2 
set equal :  f o r  a c t u a l  experimental  d a t a  
t h i s  would n o t  be  t h e  case. To examine 
i 3 e n t z f i c s t i o n  accuracy of modes w i t h  
s i g n i f i c a n t l y  d i f f e r e n t  response l e v e l ,  
Figs.  i 2 ( a )  and 1 2 ( b )  show NDOF-fre- 
quency maps for t h e  2$-damping, 2%-noise 
base l rne  model. when t h e  response l e v e l  
of mode 8 ( a t  2 4  Hr! was reduced to  1% 
and 5R, r e s p e c t i v e l y ,  of  t h e  l e v e l s e l e c -  
ted f o r  each of t h e  o t h e r  1 4  modes. The 
1%-response c a s e  r e p r e s e n t s  t h e  approxi- 
mate lower L i m i t  a t  which t h i s  mode was 
i d e n t i f i a b l e  f o r  NDOF up to  75 .  Com- 
pared nAth a s i m i l a r  p l o t  shown e a r l i e r  
i?. Fig, 6(c )  f o r  a l l  modes o f  equa l  
response l e v e l ,  no te  t h a t  t h e s e  p l o t s  
have s e v e r a l  randomly s c a t t e r e d  d o t s ,  

corresponding to "modes" w i t h  OAMCF less 
than  2%,  t h e  c u t o f f  used for p l o t t i n g  

(16) t h e  d a t a  shown i n  F i g s .  6 and 7. T h i s  
c u t o f f  c r i t e r i o n  was removed for  t h e s e  
p l o t s  t o  allow t h e  24-Hz moCe d a t a  i n  
Fig.  12 (a) t o  be d i s c e r n i b l e .  

Although Figs .  1 2 ( a )  and 1 2 ( b )  show 
that t h e  24-Hz modal frequency was iden- 
t i f i e d  i n  both cases, these d a t a  do n o t  
i n d i c a t e  t h e  accuracy of e i t h e r  t h e  
r d e n t i f i e d  mode shapes o r  d a l  damping 
f a c t o r s ;  t h i s  information is included i n  
Figs .  1 2 ( c )  and 12(d) , r e s p e c t i v e l y .  
I n  Fig.  1 2 ( c ) ,  MSCC's calculated between 
t h e  i d e n t i f i e d  m o d e  shapes  and t h e  known 
i n p u t  shape are p l o t t e d  f o r  each  case a s  
a f u n c t i o n  of NDOF For t h e  5%-response 
case, denoted by t h e  square symbols, t h e  
MSCC is e s s e n t i a l l y  1000 for  a l l  N W F  
above 46: f o r  t h e  1%-response case, on 
t h e  o t h e r  hand, t h e  IYSCC va lue  does n o t  
rise above t h e  83% l e v e l .  I n  f a c t ,  when 
the 1%-response model w a s  analyzed us ing  
NDOF of 250, t h e  MSCC of  t h e  24-82 mode 
remained a t  approximately 83%. 

I d e n t i f i e d  modal damping f a c t o r s  
fo r  t h e s e  c a s e s ,  c a l c u l a t e d  bo th  us ing  
Eq. 110) and by t h e  a l t e r n a t e  method 
d i scussed  i n  t h e  p rev ious  r e p o r t  sec- 
t i o n ,  are shown i n  Fig.  1 2 ( d ) .  In a l l  
c a s e s ,  the d a t a  appear  to  be approzching 
t h e  correct va lue  of  2% wit!! i n c r e a s i n g  
NDOF; t h e  r e s u l t s  f o r  t h e  S%-response 
case being closer t o  t h e  true v a l u e  than  
t h o s e  f o r  t h e  1%-response case. Addi- 
t ional!y,  t h e  dampinq f a c t o r s  c a l c u l a t o d  
by t h e  a l t e r n a t e  method us ing  t h e  com- 
puted e i g e n v e c t o r  d a t a  a r e  more a c c u r a t e  
a t  each va lue  of NM)F than t h e  damping 
f a c t o r s  c a l c u l a t e d  d i r e c t l y  from t h e  
i d e n t i f i e d  e igenva lues  of [A ] .  

The S e l e c t i o n  of NCOL 

I n  e s t a b l i s h i n g  t h e  t w o  response 
matrices, both t h e  number of rows ( equa l  
t o  tiiice NWF) and t h e  number of columns, 
NCOL, must be s e l e c t e d  for each i d e n t i f i -  
cation. As shown i n  NDOF-frequency naps 
i n  F igs .  6 ,  7 ,  1 2 ( a ) ,  and 1 2 ( b ) ,  t h e  
minimum r e q u i r e d  NDOF is r e l a t e d  to  t h e  
s igna l - to -no i se  ra t io  of t h e  modes. 
The v a l u e  f o r  NCOL, denoted by 's' i n  
t h e  THEORY Sec t ion  of t h i s  r e p o r t .  is 
r e s t r i c t e d  tr, be a t  l t a s t  twice N X F ,  
so t h a t  Eq. I81 contail ,-  no Ee;;er equa- 
t i o n s  than  unknowns. An i . i t s i t r v e  upper 
l i m i t  i n  s e l e c t i n g  NCOL corresponds t o  
t h e  trme a t  which t h e  free-response s i g -  
n a l  f o r  t h e  mode to  be i d e n t i f i e d  beconres 
smaller than  t h e  n o i s e  l e v e l ;  b e y o n d t h i s  
p o i n t  each a d d i t i o n a l  d a t a  p o i n t  used 
from t h e  response f u n c t i s n s  would provide 
more n o i s e  than  a d d i t i o n a l  information 
t o  t h e  i d e n t i f i c a t i o n  a lgo r i thm.  
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OJ?IGIF!AL 
OF POOR 

Th-9 effects of the select ion of 
E O L  on ident i f icat ion resulta for the 
284a!34pinq, 2O%-aoise baseline model 
are shown i n  Pig. 13. To estimate the 
tjme a t  which the s u p e r m s e d  aoiu 
CY&S the signal infoxmatioa in the 
?me-respoases, a 2O-point, runniag 
wan-square value, averaged over a l l  65 
functbom vised f o r  the model, is plot ted 
i n  F i q .  13(a).  T'hese data have bees 
r!Qr!Xll.i.Ze3 80 that the a8ymptotically 
aoproacbed noise level correspoada to 
0 d9. S b c e  a l l  15 motlea have the .BY) 

E s s e  2-1 in t h i s  model. the waa- 
square value of the free-respoaae 8igaal 
5or each &.e equals t h  aeaa-squam 
xis2 l.e-3. &-cn &A fuaction of 
:VJ. !.?'a) ,uy3ats 10 log(16) or 12 dB. 
?!:lis c?rzeeS-fids t~ Ncot of approximate- 
ly 22s. 

rskq m 9  22  65, a11 15 modal fro- 
m ~ 5 c . f 2 3  Cor f'rb3 &-a1 weze accurately 
?e?-t.i.cierl tF-7 ?:c!xl rra9cirlg from 200 
A? n - r  . azcl t k f :  va?.ce3 a re  not  shown. 
nf ~.r?c-cs:. ?z~--.cj\, i~=e the cor- 
.. -spd.i-!~ - % 7C rotwxz and iden t i f i ed  
cm40.1 &wiq fsstgrs f o r  these cases. 
Ttcse r e s u l t s  a m  s a  i n  Pigs. 13(b) 
and l3(c1 , respectively. To maintain 
c l a r i t y ,  data fo r  only the first five 
faodes (which typify the results obtained 
for  a l l  15 idea t i f i ed  s t ruc tu ra l  modes) 
are included. O f  par t icular  i n t e r e s t  in 
these f i g w s s  is the rapid deter iorat ion 
of ident i f icat ion results whea  NCOL 
is less than 200. Above NCOL of 200, 
the MCC data are affected only s l i g h t l y  
as NCOL increases t o  950, although a 
s l igh t  downward trend is noted f o r  NCOL 
greater than 300. 
ident i f icat ion w a s  obtained f o r  NCOL 
ranging from 200 t o  300. 
modal damping factors,  on the other haad, 
diverge from the selected value of 28 
considerably faster than the HSCC data 
from 1003. as shown ia Pig. 13(c).  
Selecting NCOL near 200 would ala0 pro- 
vide the best damping idea t i f i ca t ion  
over "be range of NCOL from 170 to 950. 
It is of i n t e r e s t  to note that the 
identified damping factors  i n  Pig.  13(c) 
a l l  tend to approach the correct  value 
of 29 as NCOL decreases. This effect is 
similar t o  that shown in Fig. l l ( a )  fo r  
an increase i n  NDOP w i t h  NCOL held 
constant. 

-. 

Optimun mode shape 

The ident i f ied 

Close Natural Frequencies 

A c la s s i c  problem using any modal 
ident i f icat ion technique is the accurate 
determination of the  modal parameters 
for  two or  more s t ruc tu ra l  modes of 
approximately t h e  same natural  frequency. 
Assuming no attempt was made to  appor- 
t ion the force used i n  excit ing the 
structure, the response levels of two 

PAGE IS 
QUALITY 

modes close in frequeacy may w e l l  be 
apptoyipately equal in a set of response 
m a s m a t s  obtained during wide-band 
force ekcitatioa.  I f  T seconds of 
data are avai lable  for aaalysis ,  tbe 
corresponding frequency-damaia functions 
w i l l  be de- to  a resolution of 
1/T Ba by Fourier methods. For the 
&la coastructed in th is  study, 
T = 2.5 seconds, which corresponds t o  a 
frequency resolut ioa of 0.4 Hz. To 
obtain accurate modal parameters w i t h  
netbods that r e l y  on visual  determina- 
tion of respoase pBdks in frequeacy 
spectra or frequency response functions 
is uarcasofiable t&en the m o d a l  frequency 
separation e??soaches the frequency 
reooiu",on mlie. 

To study the f r e y e n c y  resoluticr.  
a b i l i t y  of the ITD alqozithm, sevezzl 
modal &-n!.s were constructed by ncvina 
tke frq..-.. mods 8,  oriuinaLiy ~t 

lwses *?a.;z3, c?.ass to mc'e 7 a t  22.0 Ii2. 
All 1 4  n+.h.cl- mAcs ?;ere maintained a t  
their ori9!.-nal spaqing of 2 Bz frcm 
10.0 L-r, 30.0 %. Table I11 shows tke 
iden2ification r e s u l t s  using the 2%-daup 
iag. Za-noise baseline model, €or 0.10, 
0.05, and 0.01 Hz frequency separation 
between nodes 7 and 8 .  Sixty-five 
degrees-of-freedom, w i t h  NCOL of 390, 
-re used i n  the ident i f icat ions.  A t  
each frequency separation value, the 
damping in mode 8 was successively 
changed from 2% (the same value assigned 
to mode 71, to 3%, to 10%. For a l l  
three frequency separations, near-perfect 
i den t i f i ca t ion  of the parameters f o r  a l l  
15 modes w a s  obtained f o r  the cases when 
the &e 8 damping w a s  either 3% o r  10%. 
Idea t i f i ca t ion  accuracy of modes 7 and 
8 ia the  cases where both modes were 
assigned 2% damping successively deter-  
iorated as the frequency separation was 
decreased. These treads are consis tent  
w i t h  the fact that two modes, although 
of equal natural  frequency, w i l l  cor- 
respond to d i f f e r e n t  eigenvalues of [ A ]  
i f  their damping factors are different-  
the larger the difference i n  damping, 
the l a rge r  the corresponding eigenvalue 
separation. 

resolution one s t ep  fur ther ,  modal 
models were constructed w i t h  f i v e  of the  
15 modal frequencies set  t o  22.0 Hz. 
Figure 1 4  provides iden t i f i ca t ion  resul ts  
for two of these models: Fig. 14(a1 
w i t h  the f ive  modes assigned damping 
f ac to r s  of I, 2, 3, 4 and 5%; an6 
Pig. 14(b) w i t h  damping factor  assign- 
ments of 2, 4, 6, 8 and 154.  Of course, 
as shown i n  the frequency specr:rum p lo tg  
only one response peak is discernible a t  
22 Rz i n  both cases. The Faramet.ers of 
a l l  15 modes were accurately iden t i f i ed  
in each model, a s  shown, when t h e  

24.0 Ez ~n 77 *he 3aoeline %de?., ec c 

To extend the study of eigenvalue 



ORIGIF!AL P A X  IS 
OF POOR QUALITY 

perTentaqe of added noise was held to a 
m?y ).ow level: 0.016 in the AC/Cc = 
19 cas5 ann 0.1% in the AC/% = 28 
case. A'.lhonqh these noise levels are 
ext.wel?, lcrw--often unattainable 
with experhntal data-these results 
do illustrate the potential accuracy of 
the method and the relationship between 
noise level and t h p _  attainable eigen- 
value resolution. These two identifi- 
cations were run with NDOF of 65: the 
same mdcls  could be identified with 
sons?:?at higher noise levels at the 
(camputatimal) expense of allowing more 
degrees-of- freedom. 

A Condition on the Selection 

of ( A t ) 3  

The oe!.ection of the time shift 
between t ! !~ .rpsnr cvld lower halves of 
+.4s *xo respmse m*tr:JFccs, (:It) 3, 
ccp signnificentkJ aE.Sec': thc iden- 
tificatioa icc:*.tacv of modes at e?= 
ncaz ccrtatn Zzequencies: ir? particular, 
if all aL 2h.n data in the lower halves 
as2 obtained by delaying the data in 'de 
m~xr halves by (At) 3 ,  frequencies 
f~ = n/(2(/lt) 3 )  , for integer values of 
n, will n9t be identified. Using a 
differcn'l t h o  shift on one or more of 
tho stations will help alleviate 'chis 
problem, which may occur whenever 
f, e f,. Of course, selecting 
(At13 e (at11 will always eliminate the 
condition by forcing the lowest value of 
5, tb  k larger than f n ,  the upper 
I r . ~ i t  of the analysis range. 

CONCLUDING REMARKS 

Usi23 simulated free-response 
f u n c t ~ . ~ ~ ,  ',he Ibrahim Time Domain (ITD) 
algoritlun has been found capable of 
accurately identifying known, structural 
m e a l  parameters over a wide range of 
frequency separations, damping factors, 
mode response levels, signal-to-noise 
ratios, and user-selectable algorithm 
cons.anto. It has been found that the 
modal parameters can often be identified 
in cases 9f poor signal-to-noise ratio 
if sufficient computatidnal degrees- 
of-freedom are allowed in the identifi- 
cation process. A significant finding 
is that no detrimental effects were 
observed when many times more degreea- 
of-freedom were allowed than the minimum 
necessary for reasonable identification: 
this result suggests the use of a high 
number of degrees-of-freedom for the 
"blind" use of the algorithm in analyz- 
ing experimental data. 

the identified modal frequencies and 
For many of the models analyzed, 

mode shapes were more accurate than the 
corresponding modal damping factors. 
When the iaentified dampir?g factors were 
plotted as a function of either the 
number of allowed degrees-of-freedom, 
NDOP, or the ntarnher of time samples 
used from each response function, NCOL, 
however, the correct values were often 
asymptotically approached. An alternate 
method for calculating modal damping, 
using the identified eigenvectors and 
modal frequencies, was found more accu- 
rate in some instances than using the 
identified eigenvalues directly. 

alqwithm constants, direct corrct?.tion 
wa3 f o m d  between the variance ir! the 
idanti9icatiaa results and the signal- 
to-~ooise level nf ^he respccees. fn 
analyzing noisy data, wker? srfPicFent 
degreos-of-freedom were alla\rc! in the 
analvors, a11 ?a?. ural freqzezcics and 
mode shapes t-rczc! identifiee vith gccld 
ascure9y in x ~ n r l y  every instance. Low 
values of Overall Nodal Confidence 
Pac'dr, OAnCF, for modes with reasonably 
identified made shapes, were usually 
indicative of inaccuracy in the esti- 
mated damping factors. For noise-free 
input data, the identification accurzcy 
of all parameters approached the cornputti 
tianal accuracy of the computer. 

The required computer time varied 
approximately as the number of columns 
in the response =trices, NCOL, and as 
the square of the number of allowed 
degree o-o f - f reedom , NDOF. T y p  ica!. 
CDU times for identification on the CDC 
Cyber 203 computer were 15 seccnds using 
NDOF of 65 and NCOL of 390, and 340 
seconds using ADOF of 200 and NCOL of 
968. 

Related areas of work which need 

Par each set of user-selecteble 

further 

1. 

2. 

3.  

attention include the study of: 

techniques to minimize noise 
and distortion on free-response 
functions from experiment21 
measurements; 
effects of structural non- 
linearities on ITD identifi- 
cation results: and 
resolution and roundoff errors 
which may occur in using the 
technique on smaller-wordlength 
computers. 
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TABLE 1.- IMNTIFICATION RESULTS FOR THREE BASELINE llO0EL.S. 

1 
2 
3 
4 

nmF 65; IC& 390 In each 1d.ntItlutlaa. (All "Noise Nodes" had W F  e 2%) 
WC, 25 ln 411 a. 25 noise. (Sa Flgum 1 for w. shapes) 

mc YITH INPUT cmr IUI. - myn' uc,. 1 (Eu(cF MST - .c 5 3 4 15 

9.9113 4.373 95 65 100 0 0 0 6 0 0 0 0 0 8 0 11 0 0 
11.973 4.415 88 53 0 99 0 0 0 3 0 0 0 0 0 4 0 0 0 
14.008 2.921 98 61 0 0100 0 0 0 b 0 0 1 0  0 0 9 0 

15.982 3.159 91 50 0 0 0100 0 0 0 rl 5 0 0 0 0 0 4 

I I I I 

1 I 1o.ooo I 2.w 1 100 I 6s 

93 65 

m 61 

26.016 2.598 94 55 
28.026 2.785 93 61 

11 a.031 2.492 81 58 
12 31.913 2.608 12 55 
13 34.014 2.333 89 
14 36.053 2.541 ?5 58 
15 31.954 2.429 86 53 

8 9 , m  

8 24.000 2.334 89 60 

6 0 0 0 1 0 0  0 0 0 0 0 0 0 0 0 
0 3 0 0 O l W  0 0 0 0 0 5 0 0 0 
o o 4 o o 0 1 0 0  o o i o o o 2 o 
t o o o o o oiw o o 1 o 1 o o 
0 0 0 5 0 0 0 0 99 0 0 0 0 0 6 
0 0 1 0 0 0 1 0 0 99 0 0 0 2 0 
8 0 0 0 0 0 0 1 0 0 100 0 1 0 0 
0 3 0 0 0 6 0 0 0 0 1 99 0 0 0 

6 4 1 0  0 0 0 5 0 0 1 0  0 1 0 9 9  1 0  
0 0 9 0 0 0 2 J 0 2 0 0 0 9 9  0 
0 0 0 4 0 0 0 0 6 0 0 0 0 0 1 0 0  

1 10.016 5.740 
2 12.030 6.031 
J 14.000 5.654 
4 16.006 6.b19 
5 18.026 5.b97 
6 19.932 6.441 
7 22.07' 6.092 
8 24.065 5.814 
9 26.121 6.620 
io 28.231 a.047 
11  30.184 6.578 
12 P.432 8.862 
13 34.061 1.484 
14 35.688 8.131 
15 37.660 5.351 

llxc u 
1 2 3 4 5 6 10 11 12 13 14 15 

trio. - 
100 0 0 0 6 0 0 C 0 0 8 0 1 1  0 0 
0 1 0 0  0 0 0 , )  0 0 0 0 0 3 0 0 0 
0 0 1 0 0  0 0 0 b 0 0 1 0 0 0 9 0 
0 0 0 9 9  0 0 0 0 4 0 0 0 0 c 4 
6 0 0 0 9 9  1 0 0 0 0 0  0 5 0 0  
0 3 0 0 0 9 8  1 0  0 0 0 5 0 0 0 
0 0 3 0 0 \ 96 2 0 1 0  0 0 2 0 
0 0 0 0 0 0 1 9 7  2 1 1 0  1 0  0 
0 0 0 5 0 0 0 2 ~ 9 0 0  0 0 5  
1 0  1 I O 0  1 1  2 8 6  7 2 0 2 0 
u 0 0 0 0 1 0  0 0 5 84 10 1 0  0 

1 2  3 1 0  0 6 0 0 1 . 1  7 7 1 1 0  4 0 
1 5  1 2  0 3 2 0 1 1  0 0 1 0 6 3 1 9  0 

, 1  0 7 0 1 1  2 0 1 2  0 3 1 2 8 1  1 

1 0  0 0 4 0 0 0 0 6 0 0 0 0 b 95 



TABLE 11.- IDENTIFICATION RESULTS FOR THE Z I - W I N G .  POL-NOISE 
BASELINE WDEL AT HIGH ALLOWED DEaEES-OF-FREEDON. 

USE 

1 
2 
3 

- 
Hal€ nQ. 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 - 

I 
f;(Ht) f 8 ( H t )  (c/cc) 7 (c’cc) 8 f7(Hz) f8(Ht) (C’cc) 7 (c’cc)8 f7(Hz) f8(Hz) (c’c~) 7 ( c / C ~ )  8 

22.000 22.100 2.60 2.00 22.000 22.050 2.00 2.00 22.000 22.010 2.00 2.00 
3.00 3.00 3.00 

10.00 10.00 10.00 

f CIC, ONEF mu 

9.99 8.11 9Q 99 
11.99 7.69 80 99 
13.99 4.28 95 99 
15.99 5.39 76 99 
17.99 3.2) 87 98 
20.05 4.36 76 98 
22.02 3.59 77 98 
24.04 2.8) 85 99 
26.09 3.87 59 96 
28.00 4.64 35 95 
30.04 3.51 70 95 
32.05 4.41 39 91 
34.25 4.22 33 86 
36.30 5.24 17 51 
37.43 6.12 19 87 

tic, O A ~ F  mcc f C/Cc OAmF MSCC f CIC, OAWCF 

7 21.998 2.51 87 78 21.941 4.28 57 66 21.184 3 . 6 9  1 

8 22.074 2.07 100 77 22.034 2.01 100 66 22.007 2.01 100 

7 22.OW 2.11 96 90 22.001 2.12 96 99 22.001 2.12 98 

8 22.101 3.08 98 99 22.053 3.09 100 99 22.015 3.09 100 

7 22.001 2.01 loo 100 22.001 2.Oi  100 100 22.001 2.01 100 

8 22.101 10.Q 100 100 22.051 10.02 100 100 22.011 10.02 100 

- 
F 

10.01 
11.99 
14.00 
16.00 
18.01 
19.99 
22.01 
24.01 
26.02 
28. w 
30.00 
32.03 
34.00 
36.02 
37.98 

- 

- 

mcc 
33 
66 
99 
99 

100 
100 

CIC, 

2.70 

- 
2.72 
2.44 
2.53 
2.29 
2.49 
2.28 
2.16 
2.34 
2.57 
2.31 
2.39 
2.18 
2.29 
2.22 - 

JMCF ad( 

% 1w 
94 1w 

100 1w 
98 1w 
95 loo 
88 1w 
88 100 
95 1w 
9 6 9 9  
89 99 
94 l W  
8 6 9 9  
89 99 
85 1m 
94 loo 

F ClC, (USWC 

I 

10.01 2.44 98 
11.99 2.48 92 
14.01 2.27 98 
16.01 2.38 96 
18.01 2.21 % 
19.99 2.32 90 
22.01 2.15 93 
24.00 2.13 92 
2 6 . 4  2.22 94 
27.99 2.48 88 
30.00 2.25 91 
32.03 2.21 81 
33.99 2.15 89 
36.02 2.21 83 
37.98 2.14 96 

K C C  F 

100 10.01 
-100 11.99 
100 14.01 
106 16.01 
100 18.00 
100 20.00 
100 22.00 
100 24.01 
100 26.01 
100 27.99 
100 30.02 
100 32.93 
100 34.00 
I00 35.99 
100 37.97 

C R ,  

2.31 
2.42 
2.18 
2.34 
2.11 
2.24 
2.08 
2.07 
2.13 
2.27 
2.14 
2.09 
2.07 
2.08 
2.06 - 

98 
94 
% 
93 
% 
95 
93 
93 
92 
93 
87 
87 
90 
8s 
88 - 

6 C C  

100 
100 
100 
loo 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 
100 

- 

- 
( A I  I “Noise Modes” had ~ c F  2%) 

TABLE 111.- IDEh7IFICATICN RESULTS HIT!i FREQUENCIES OF MODES 7 AND 8 
SET NEARLY EQll4L IN 2”,CAMPING* 2%-NOISE BASELINE MODEL. 

(NOOF 0 65; NCOL * 390 I n  each identlfica:ion.) 

A f  * 0.10 Hz I II A f  0.05 HL A f  a 0.01 HL 

INPUT PARAMETERS 

( Identf f lcat ion accuracy o f  other 13 modes comparable to values shown 
i n  Table I for  2%-damping, 2%-noise model.) 
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Figure 1.- Example P l a c m n t  af Free-Response Data in to  the Two Response Matrices. 



SAWLING FEQUENCY 8 400 Ht (la00 PTS. I N  EACH FREE-RESPONSE FCT.1 
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(a) C/Cc = 2% i n  a l l  modes. 2% noise. 
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(e)  C/Cc = 5% i n  a l l  modes. 10% noise. 
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Figure 2.- Typical free-responses and frequency spectra f o r  three basellne models, 
with modal frequencies spaced w a r y  3 !!z from 10 t o  38 Hz. 
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W 
13 

(Mode shape phase angles 
indicated i n  pclar  plots)  

Figure 3.- Ident i f ied  (complex] mode shapes for baselfnc model with 2% damping 
i n  a l l  modes and 2% noise. 
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NDOF = 65; NCOL = 390. 

W 

Figure 4.- Ident i f ied (complex) mode shapes for baselinz model with 2% damping 
i n  a l l  modes and 202 noise. 

NDOF = 65; NCOL = 390. 

W W 

Figure 5 . -  Ident i f ied (complex) mode shapes for base!fne model wi th  5% damping 
i n  a l l  modes and 70% noise. 
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NCOL - 300 In  each ident i f icat ion.  

(Heights of vert ical  l i n e  segments proportional t o  OABCF values) 

L . Y , , L ~ n U L A  , A I Y _ I _ L C Y I L  

7 :o 20 30 40 

Frequency. Hi 

( a )  0.001% Noise 

Ff couency. 4: 

75 

70 
65 
60 
5s 
50 
45 

I& 

0 4 35 

30 
25 
20 
15 
i n  
5 

30 
T- 

/ i  
/ I  
j j  
I 1  
/ I  

3 

( c )  2% Noise ( d )  5% Noise 

Figure 6.- "NUIF-Frequency Maps" for 2l-damping baseline mOdel a t  several low 
noise/signal rat ios.  



NCOL = #w) in  each identif ication. 

( b i g h t s  o f  vertical l i n e  s e g m t s  proportional t o  W F  values) 

75 
70 

65 
6C 

55 
50 
a5 

g 35 
6 40 
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25 
20 
15 

10 
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75 
70 
65 
60 
55 
50 
45 

& 40 
4 35 
30 
25 
20 
15 

IC 
5 

I . . A  
I ,  I . .  

10 20 30 ul 50 
Frequency. HZ 

(.a] iOZ Noise 

0 10 20 30 40 50 
Frequency.  Hz 

(b) 20% Noise 

( c )  50% Noise ( d )  100% N;ise 

Figutx . . - "NfrCF-Frequency Maps" f o r  2%-dampinp baseline model a t  several high 
noise/signal rdtios.  
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2(St 1- 

Figure 8.- Contours o f  e+:’ danping factor i n  the plane 
of the eigenvalues of [ A I .  

( E  = radius o f  B ‘f- 
eigenvalue uncertatnty) 

,I- 
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&damping, 20Z-noise baseline model. 

HDOF = 65; ncoL 0 390. 

E/2 

Identification Results 

rn 
. I  / \  -1.0 -.8 -.6 -.4 -.2 0 -7 - 4  .6 -3 1.0 

Real Part of Eigenvalue 
(a) M 1  = 1 [ ( A t l l  = '/SF; FT = 200 Hz] 

c. nz 

9.9) 
I2.P 
1a.m 
16.01 
17.98 

n.w 
R.D) 
2b.W 
r: e* 

27 ?9 
30.07 
P 07 
r.cn 
l.Q 
17.92 

Identification Results 

M m  
21.- 

24 m 
26m 
28.01 
1 . 0 1  
11 I t  
Y.01 

17.95 
i.m 

(b)  N1 = 3 [ ( A t ) ,  = 3/SF; FT = 66.67 Hz] 

z.75 
2 . U  
23.3 
2 . S  
2.n 
i . Y )  

2.61 
2 . 4  
2.34 
2 a1 

m 

m 
a 

?4 

91 
.1 
72 

07 
75 
96 

Figure 10.- Typical effect o f  chanqing (bt!; on identification accuracy. 
Polar plots show eigenvalues of-[A\l. 

67 



% ?/3 

68 



40  
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Freouencv. HZ 

(b) N W F - f m m q  nap with rode 8 response 
- leve l  5% that  o f  other modes. 
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0 
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v , =  

0 
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NOOF 

(c) nade 8 mCC values. 

40 

35 
Std AI'Crna!e 

0 3 17. Resooqsc L e d  - 
0 8 5% Rcsocmse l e d  

"13 
\ 
O O O O 0 3 c ,  

30: - 

20 25 30 35 40 45 50 55 60 65 70 75 
NDOF - 

(d) 140th 8 damplng factors calculated by standard and al ternate methods. 

Figurr 12.- Ident i f icat ion m u l e  f o r  2%-damping, 2%-noire baseline model with 
response level  o f  mode 8 equal to 1% and 5% that  o f  other modes. 



m 

u 0 100 200 30Cl YO0 500 600 700 8CO 900 1000 
SFIMPLE NO. 

(a) Running average man-sqwre value of a l l  65 free-response 
functions far ZX-damping, ZM-noise baseline mode:. 

h!COL 
(b) Calculated MSCC va:ues as a function o f  NCOL. 

NCOL 
( c )  Ident l f ied modal damping factors as a function o f  NCOL. 

Figure 13.- Effect  o f  NCOL on ident i f icat ion results 
f o r  22-damping, 202-noise baseline model. 



(a) 5 modes a t  22.000 Hz. C/C, = 1, 2 ,  3, 4 & 5%. 0.01% noise. 

(b)  5 nodes a t  22.000 Hz. C/C, = 2,  4, 6. 8 & 10%. 0.1% noise. 

Figure 14.- Identlflcatron results  for  15-mde model with FIVE modes a t  22.000 Hz, 
for C/Cc separations of 1% and 2%. Polar plots show eigenvalues o f  [A] .  
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DISCUSSION 

nr. Bwina ( I m p e r i a l  Co l l ege ,London) :  
Are you  convLnced t h a t  t h e  t h e o r e t i c a l  
d a t a  you have  u r e d  wh ich  was p o l h t e d  
w i t h  n o i s e ,  r e a l i a t i c a l l y  r e p r e s e n t a  t h e  
k i n d  of d a t a  you g e t  from e x p e r i m e n t r  on 
r ea l  e t r u c t u r e r ?  

nr. I b r a h i m :  Prom my p r e v i o u s  ex- 
p e r i e n c e ,  I wou ld  r a t h e r  work w i t h  
e x p e r i a e n t a l  d a t a  t h a n  s i m u l a t e d  d a t a .  

nr. t w i n s :  I a e k e d  b e c a u r e  we've b e e n  
t h r o u g h  a s imilar  k i n d  o f  p r o c e s s :  a n d  w e  
f i n d  t h a t  e x p e r i m e n t a l  d a t a  c a n t a i n s  a 
q u i t e  d i f f e r e n t  t y p e  of e r ro r  t o  t h a t  
v h i c h  you p u t  i n  w i t h  random e r r o r e  
s u p e r i m p o s e d  on  t h e  t h e o r e t i c a l  i d e a l .  
The a t r u c t u r e s  h a v e  s y s t e m a t i c  e r r n r s .  
You have  n o n - l i n e a r i t l e e  a n d  I v o n d e r  
w h e t h e r  t h e  method is e q u a l l y  e f  f e e t i v e  
o n  r e a l  d a t a  a s  you h a v e  shown nn t h e  
s y n t h e s i z e d .  

Hr. Xbrahim: Yes, v e  h a v e  l o t s  of p r e -  
v i o u s  a p p l i c a t i o n s  a n d  ve w i l l  p u t  t h e  
p a p e r  i n  t h e  AIAASDM C o n f e r e n c e  i n  A p r i l  
a n d  we are  d e a l i n g  w i t h  l a r g e  modal  qur- 
v e y s  of  r e a l  e x p e r i m e n t a l  f u l l  s c a l e  
s t r u c t u r e s .  And t o  a n s w e r  y o u r  q u e s -  
t i o n ,  I p e r s o n a l l y  f e e l  a s  c n m f o r t a h l e  
v i t h  e x p e r i m e n t a l  n o i s e  as  w i t h  s+.mu- 
l a c e d  n o i s e  b e c a u s e  t h e  e x p e r i m e n t a l  
n o i s e  is n i c e  a n d  random. What yon 
g e n e r a t e  i n  t h e  c o m p u t e r  u s u a l l y  h a s  
some d i s t r i b u t i o n .  The o t h e r  q t i e s t i o n  
Is n o n - l i n e a r i t y .  We d i d  n o t  f n c l r i d e  a 
n o n - l i n e a r i t y  h e r e ,  b u t  n n n - l i n e a r i t y  of 
t h e  S t r l J C t U t C S  is a n o t h e r  cnmplc t c? . )  
d i f f e r e n t  b a l l  aame and  i t  h a s  t n  he  
d e a l t  w i t h  s e p a r a t e l y .  But w e  Ret A S  

good r e s u l t s  wi:h e x p e r i m e n t a l  d a t a ,  
y e s .  
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Large Modal Survey Testing 
Using the Ibrahim Time Domain Identification Technique 

Samir R. Ibrahim' 
Old Dominion University, Norfolk, Vu. 

and 
Richard S. Pappat 

NASA Langley Research Center, Humpron, Vu. 

The ability of the lbnhim time domain identiflmtion algorithm to idcalify a compkte set of ~ t r u ~ t u n l  modal 
purmetm. using a large number of free-response time histories simultaneomdy in one mallysis and assuming an 
identification model with a high number of degrees of freedom. hrs been studied. Identification mulls using 
simulated fm mponscs of a uniform rectangular plate. with Us mc4Surement stations. and experimental 
responses from a ground vibntion test of the long duration exposure facility (LDEF) Space Shuttle pryload, 
with 142 mcasuremeni rtations. arc pmcnted. A3 many as 300 degrees of freedom were allowed n mal!zing 
thest data. In genenl. the use of a significantly oversized identification model in the identificati .I process was 
found to maintain or incnuc identification accuracy and to identify modes of low m p o n v  level that arc not 
idcntifkd with nnaller identification model sizes. Tbc concept of a mode shape correlation constant ii in- 
troduced for use when mom than one identification analysis of the same s t r u c t ~ ~ ~  are condu.ted. l'his constant 
quanrifks the d q m  of cornlation between any two sets of complex mode shapes identified. using different 
excitation conditions. different user-selectable algorithm constants. or overlapping sets of measurements. 

Nomenclature 
=square system matrix (of order 2m).  
= lbrahim time domain (technique) 
=number of computational degrees of freedom 

=modal confidence factor 
=mode shape correlation constant 
=number of computational degrees of freedom 
= noise-to-signal ratio 
=vector of measurement noise time histories 
=overall modal confidence factor 
=number of st:uctural modes 
=root mean square 
=number of rows in [ O ]  and [ & I  
=time instant) 
=vector of free-response time histories 
=ktheigenvalueof [ A ]  
=portionof { $ I r  
=time shift between I O ]  and [ 61 
=modal damping factor = C/C, 
= kth characteristic roo: of structure 
=response matrices (2m xs)-  
=kth eigenvector (comp!ex mode shape) of [ A  I 
=transpose of vectnr I ] 
=complex conjugate of vector I I 
=magnitude 

(NDOR 

Introduction 
SING a time-domain approach, it has been shown that U the identification of structural modal parameters from 

experimental data can be placed in the form of a xnplex 
eigenvalue problem.' The resuiting method, referred to as the 

-~ 
Presented as Paper 81-0528 at the AIAA/ASME/ 4SC7AHS 22nd 
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5 .  1982. This paper is declared a work of the U.S. Government and 
therefore is in the public domain. 

'Associated Professor, Department of Mechanical Engineering and 
Mechanics. Member AIAA. 
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AIAA. 

lbrahim time domain (ITD) technique, uses free:response 
time histories I x ( r )  I measured at various points on a test 
structure to compute a square system matrix [ A  I ,  or order 
Zm. in a least-squares sense from the equation 

In this equation. [0] and 141 are rectangular matrices of size 
2m xs. with s r 2 m .  whose elements are 

The rth row of [ O ]  corresponds to the rth measurement ur a 
measurement delayed some arbitrary time, A7. The use of 
delayed or "transformed" stations' allows the cDmputation 
of a modal confidence factor? (MCF) at each station for each 
identified mode. The MCF parameter is used to differentiate 
the desired structural modes from "noise modes." computed 
whenever the number of structural modes cont:ibuting to the 
responses is smaller :han m. A (complex valued) MCF is 
calculated for each station. and indicates the consisteccy of 
the modal deflection identified at each station with the 
defleetioa at  the same station identified using data measured a 
small time later. Its value is near 100°'o in amplitude and 0 deg 
in phase for accurately identified structural modes. 

Possible time-domain functions which can be used include 
actual free decays obtained following random excitation of 
the structure. unit-impulse response functions calculated by 
the inverse Fourier transform of frequency r e s p n s r  func- 
tions, or "random-decrement" functions! calculated from 
random operating time histories. 

After computing [ .4]  from Eq. ( I ) .  an eigenkalue problem 
of the f o r a  

(3) 

is solved. The kth eiger.vec:or of [ A  I is the kth complex mode 
shape of the structure and the kth eigenvalue of [ A  1 is related 
to the structure's characteristic root h, through the equatton 

[ A  114 l k = a k  I $ I k 

a, = e A k [ a ' /  (4) 
Details of the identification technique are contained in 

Refs. 1-4. 
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I n  previous applications of the technique using simulated 
and experimental the primary purpose was to 
establish credibility o f  the method. The studies were limited, 
for research purposes, to problems with small numbers of 
measurement stations and structural modes. For large modal 
survey tests, however, it is  not unusual to obtain responses at 
230 or more measurement stations on a test structure. 

I f  the response functions used in the identification 
technique are entireiy noise-free, the size of the identification 
model, m (or “number o f  allowed computational degrees of 
freedom”) must exactly equal the number of excited struc- 
tural modes in the responses. When experimental data are 
processed. however, there i s  always some level o f  noise, and 
the number of structural modes contributing to the responses 
i s  not exactly known. Since the maximum number o f  modes 
identified in a single computer analysis i s  equal to the number 
o f  allowed degrees of freedom, an obvious question i s  
whether all parameters can be accurately obtained by simply 
allowing the number of degrees of freedom to be 
unquestionably larger than the number of excited structural 
modes. Since the number of measurements analyzed in each 
identification run can be as high as the number of allowed 
degrees of freedom. the use of a large enough identification 
model would also allow the response functions for all stations 
selected for the modal survey to be processed simultaneously. 

When the number of available measurements i s  las  than 
the number of degrees of freedom desired in the identification 
process. extra “transformed stations” can be formed by 
delaying the original response functions by small arbitrary 
time increments. Using this approach, a large identification 
model can be used even when a relatively small number of 
responses are available. 

I f  computer storage limitations restrict the processing o f  a 
large number of response measurements simultaneously. a 
technique i s  presented for correlating sets,of identified mode 
shapes from differenr runs using data corresponding to a 
common set of measurements used in each analysis. With this 
approach, modes obtained for two or more portions of the 
available test measurements can be ma[ched more accurately 
than on the basis of identified frequencies and damping values 
alone. A mode shape correlation constant (MSCC), whose 
value is zero for no correlation and 1.0 for complete 
correlation. is introduced for this purpose. The MSCC i s  a 
general procedure for measuring the degree of correlation 
between any two complex modal vectors. I t  has also been 
found useful in correlating mode shapes identified with 
responses from different excitation conditions or identified 
using different values of the few user-selectable algorithm 
constants, to provide additional confidence in the idm- 
ticcation results by studying the consistency of independent 
analyses. 

This  paper presents typical results that have been obtained 
in processing simulated and experimental data with the ITD 
identification algorithm using a large number of measurement 

stations and/or large identification model sizes. The results 
indicate that the use of large identification models in the 
analysis procedure can result in the accurate identification of 
a large number of structural modes in a single attalysis, often 
allowing al l  measured response data from a large model 
survey tesl IG be used simultaneously in computing the modal 
parameters of a test structure. 

Theory of Oversized Identification Model 
A set of free-response functions containing modal in- 

formation from p structural modes o f  vibration can be ex- 
pressed as 

(5) 

I f  noise-free responses are used in the identification 
algorithm, the identification model must have exactly p 
degrees of freedom for unique identification. I f  more than p 
degrees of freedom are allowed, the [ 4 I matrix i s  singular. 

In experimental work, however, measured responses always 
contain a certain amount o f  noise. These responses can be 
expressed as 

k - I  

(6)  

In previous applicationsi4 i t  was found that using noisy 
tcsponses in the identification process with the number of 
degrees of freedom larger than p yielded good results without 
encountering singularity. The results even improved as the 
identification model size was increased. The qualitative ex- 
planation for this situation is that the extra degrees of 
freedom act as outlets for the noise. In this case, the noisy 
responses can be expressed as 

k -  I 

in which the noise i s  modeled as a combination of (2m - 2p) 
complex exponential functions. Since the value of p.  the 
number of excited modes, is a characteristic of the structural 
response and not the data analysis process. additional ex- 
ponential functions are allowed to represent the noise in the 
math model as rn i s  increased. This results in a higher-order fit 
for the noise portion of the responses, reducing residuals that 
wGuld otherwise be included in the signal portior, of the 
responses. 

Mode Shape Correlation Constant 
When two or more sets of measurements are used in 

identifying the modal parameters of a test structure, 
corresponding modes obtained from different identification 

Table 1 Model and idmtifkstion prrmmctcn for the four dmolmtcd plate tes~s 

Allowed 
Test measurements modes frequency, Ht L ratio. N W F  

rms N/S No. of No. of Natural Damping 

I 225 2 20.000 
30.000 

2 225 2 30.000 
30.000 

3 225 2 20.000 
3c.000 

4 225 30 10.000 
I :  000 
12.000 

39.000 
... 

I .om 0.0001 300 
I .000 
I .000 0.0001 300 
I .000 
I .000 21)o 300 
I .ouo 
I .000 20 300 
I .000 
I .owl 

I .000 
... 
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runs can often be matched by comparing modal frequencies 
and damping factors. This procedure can lead 10 mismatchitig 
of some mode,  however, particularly in regions of high 
modal density, owing to variance in the identified frequency 
and damping data. To reduce the possibility of mismatching, 
mode shape matching can be used in addition to frequency 
and damping matching. 

Let I$, 1 and }$,I be two identified (complex) modal 
vectors from identification runs 1 and 2 that use an 
overlapping set of measurements. If the modal vectors at the 
common measurements are denoted by iy ,  I and i y2  I ,  the 
correlation of the mode shapes can be estimated by the degree 
of correlation between 17, I and 1 y2 I using a mode shape 
correlation constant (MSCC) defined as 

where Tdenotes the transpose and the complex conjugate. 
The MSCC between two (complex) modal vectors ranges 

from 0 for no resemblance to IOOOr, for perfect resemblance. 
Values between 0 and 100% can be interpreted as the amount 
of coherent information in the two compared mode shapes. 
Of course, care should be exercised in using the MSCC in- 
formatior! since it can indicate false correlation between 
overall mode shapes if  the number of elements in I ? ,  I and 
1 y2 I is small and only portions of the two shapes have some 
resemblance. Using frequencies and damping factors. 
together with MSCC. can significantly reduce the possibility 
of mismatching. 

461 

Results and Discussion 
In this k?ction. results from several data analyses of 

responses from two test structures are reported and discussed. 
The first structure i s  a YASTRAN-simulated rectangular 
plate. The other is the long curation exposure facility (LDEF) 
Space Shuttle payload. The simulated plate results are in- 
cluded to demonstrate typical accuracies which are obtained 
using simulated free responses from a system with known 
modal parameters and an overexpatided identification model. 
The results of the simulation study also help in interpreting 
and supporting the accuracy of the LDEF experimental results 
that follow. 

Simulated Plate Rcsulrs 
An arbitrary number of NASTRAN mode shapes of a 

rectangular pla:e, with arbitrarily assigned natural 
frequencies, damping factors. and response :vels, were used 
in constructing free-response functions analyzed wi th  the 
iC ntification algorithm. Four sets of response functions were 
formed for use in [our different identification runs. The first 
three contained only two modes, w i t h  varying assigned modal 
frequencies and noise-to-signal ( N ' / S )  ratios. The number of 
measurement stations and structural modes in the fourth set 
were selected to simulate those of an actual large modal 
survey test. In each set. the response levels of 311 modes were 
set equal. Table 1 shows the parameters used in  establishing 
and analyzing each of :hese simulation data rets. NDOF IS the 
number of computational degree5 of freedom allwed in the 
identification model. 

Table 2 Identincation mults f w  the four sirnulattd plate 1-1s 

Natural 
Mode frequency. Damping O4MCF.' SISCC. 

Test NO. H Z  f. 0% 3 0'0 

I I 
2 

2 I 
2 

3 I 
2 

4 I 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
I 1  
Ii 
13 
14 
I5 
16 
:7 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

20.000 
30.000 
30.000 
30.001 
20.006 
29.989 
9.998 
11.003 
11.990 
I3.o(L3 
14 006 
14.999 
16.005 
17.012 
17.999 
19.001 
20.003 
20.993 
22.007 
22.994 
23.985 
24 990 
26.000 
27.000 
28.009 
29.019 
30.006 
3 I .008 
32.010 
33.002 
34.007 
35.024 
36.026 
37.001 
37 982 
39.033 

I .000 
I ,000 
I .Ooo 
I .ooo 
2.234 
1.981 
2.100 
1.812 
I .746 
2.047 
1.492 
1.879 
I 505 
1.255 
1.615 
1.691 
I .435 
1.365 
1.260 
I .385 
I .334 
I ,498 
I.IW 
1.447 
1.314 
I.IY5 
1.373 
I 113 
1.394 
1.447 
I299 
I ?32 
I387 
1.458 
1.459 
I301 

100 
100 
100 
100 
73 

91 
90 
95 
91 
98 
92 
93 
96 

a6 
94 
89 
93 
37 
UP 
84 
95 
PI 
8' 
89 
83 
92 
81 
79 
78 
82 
75 
69 
76 
86 

-- 
/ L  

n8 

100 
100 
1m 
100 
98 
Y8 
99 
99 
99 
99 
99 
99 
99 
loo 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
98 
99 
YR 
98 
98 
96 
99 

'All oihcr modes ("noise modes") had an OAMCF of leis than 2 4  
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Rcsulls for SC*G identification runs, using a range o f  
allowed degrm of freedom and two different excitation 
wnditions. wi l l  be shown. Table 3 summarizes the test and 
analysis parameters for each run. 

Figure 2 shows the average value o f  the quadrature com- 
ponents of all 142 frequency response functiow for the :- 
excitation test. over the 5-55-Hz frquency range. The ab- 
solute value of each quadrature fundon was teken prior to 
averaging. and the result is presented on a logarithmic scale. 
This "composite ' function provides a good indication o f  
both the natural frqucncies and relative rcsmnse levels of the 
struaural niodes excited in the z-excitation test. For this plot. 
the reference decibei level has no special significance. 

In run 1. the number of allowed degrees of freedom 
(NDOF) was incrcmented from I to 75 in steps o f  I .  and then 
from 80 to -90 in steps o f  IO. Figure 3 shows a "map" o f  the 
identified modal frequencies as a function o f  NDOF. The 
identified frquencia are denoted by vertical line segments at 
the corresponding frquencies whose heights are proportional 
to the OAMCF value calculated for each mode. An OAMCF 
of 100% i s  represented by a line height equal to the distance 
between adjacent NDOF values used in the analysis. A 
continuocs vertical line indicates higher confidence in the 
identified mode, while a dashed line shows lower confidence. 

I t  i s  o f  interest to note the order in which modes appear on 
the map as NDOF i s  increased. The first mode to appear, n-ar 
30 Hz. hbi the largest average response level, as Seen in Fig. 2. 
The next two modes appear near 27 Hz. followed by ones near 
14.42, and 48 Hz. As NDOF is  increased further. some lower 
level modes near 7 and 21 Hz are identified. As suggested by 
E q .  (7). rh: average strength o f  the "noise modes" decreases 
when the size of the identification model i s  expanded. 
allowing lower strength structural modes to be identified. This 
khavior i s  clearly indicated in Fig. 3. As NDOF increases 
from 80 to 200. more new vertical lines start to form, in- 

dicating new identified modes. Based on the results of many 
other simulated Flax no evidence exists to 
suggest that thew new mode5 ari adverse effects resultieg 
irom the rxpansion c f  the identification mode! size used in the 
identification. The straightness of the vertical lines in this map 
illcstrata the insensitivity sf  the identified frequencies to 
higher numbers of degrees o f  f!eedom than aecessary for 
initial identification. and the consistency and stability of ihe 
analysis process ai high NDOF s aiues. 

In runs 2 and 3. upit-impulse rsoonscs for :he 142 statrons 
ovec the 5-55-Hz frequency range. with single-shaker z ex- 
citation of thc st.-ucture. are u d  in identifications wirh 150 
and Mo degrees of freedom (DOF). respectively. In run 4. 
"zoomed" transfer functions over the frequency interval of 
19.7C :o 32.25 Hz, transformed to the time domain, were 
analyzed with I50 DOF. For run 5 .  responses to single-shaker 
y zxcitation of :he structure. over !he 5 - 5 5 - H ~  range. were 
analyzed with NDGF 01 300. 

The curves in Figs. 4ad show the average quadrature 
component o f  all 142 frqdency raponsc fdnctioi;s obtained 
for runs 2-5. respectively. The curves consist oi SI2 equally 
spaced valucs each. I he diarr.ond s)mbol: placed above the 
curves denote the frequencies o f  all IfDidentified modes 
with an OAMCF of 60% or largn, for each of the four runs. 
The 60% OA.MCF cutofi i s  arbirrarily selected IO single out 
strongly identified modes. These figures are provided IO 

illustrate three basic resula of this study: The strong 
mela t ion  between ITDidentified modal frequencies and 
peaks in measured frequency response fiinctions; the iden- 
tification of modes with low response level as the number of 
allowed degrees of freedom i s  increased; and the ability of the 
identification algoriihm to identify modes which art ,paced 
clcxr in frquency than the resolution of classical Fourier 
analysis. I n  these figures the diamond symbols are pixed 
quidistani from the composite quadrature functions at each 
ITD-identified frequency, and indicate the identified mod4 
frcqurncia only. 

Many interesting comparisons o f  the results shown in Fig. 4 
can bc made, some of which are highlighted by circled letters 
ad. Near 21.5 Hz. denoted region a. three modes are iden- 
tified using I50 DOF in Fig. 4a. and four modes are identified 
using 3UO DOF in Fig. 4b. On examining Fig. 4c. in which thc 
resolution o f  the frequency response funcrion is four times 
g r a t a  than in 4a or 4b. the existence of four distinct respoiae 
peaks i s  apparent in region a. In both Figs. 4a and 4b. a mode 
was identified at 24.0 Hz. denoted by b. where no indication 
of a structure mode was apparent. Again on examining Fig. 
4c. the existence of this mode is  just discernible along the 
ramp o f  the more strongly excited mode at 24.2 Hz. Region c 
shows several highly coupled modes identified with the :- 
excitation respome data in Figs. 4a and 4b, but are better 
separated in the ytxcitation data, Fig. 4. Region d shqws 
two identified modo in Fig. 4d near 53 Hz. where a more- 
defined response is noted in Fig. 4b. 

To study the consistency of tne identifications and IO 
demonstrate an spplication o f  the MSCC parameter. Figs. Sa 
and 5b provide "cross-plots" of the 1TD-idm.tified modal 
frequencies and damping factors. respectively. determined 
from two independent tests of the LDEF: run 3 for z ex- 
citation and run 5 for y excitation. B j th  idrntificaiioiis were 
run using 300 allowed degrees of freedom. The data show. in 
these plots represent results of correlating all 300 identified 
modes ("noise" and structural) from run 3 with all 300 from 
run 5. using the MSCC parameter. Results for all pairs of 
modes with a calculated MSCC of 8OWo or larger are shown. 
The excellent agreement of iden:ified frequencies shown in 
Fig. Sa implies not only that consistent mode sham were 
determined in two independent tests of the structure. b u  that 
the calculation of MSCC values using a large number of 
measurements (142 for these data) can potentially match 
identified modes independent of a comparison o f  identified 
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Computation of Normal Modes from Identified Complex Modes 

S. R. Ibrahim' 
Old Dominion Uniwnity. Norfolk, Virg 'nic 

Nomtndatrrre 

=damping matrix 
=modal damping matrix (diagonal) 
= frquency. Hz 
=imaginary pan of the j h  element o f  a complex 

modal vmor 
=stiffness matrix 
=modal stiffness matrix (diagonal) 
=mass marrix 
=modal mass matrix (diagonal) 
=measurements noise 
= j h  eigenvector of the state variablequation 
= j h  assumed modal vector 
=real pan of the j th element of a complex modal 

=/th assumed characteristic root 
v m o r  

G:; I I x ( r )  1 =statevector.= 

= free-response:> ne function 
=two angles defining sign ( *) boundaries for the 

=phase angle for the/th element of a norma: modal 

=phase angle of t h e j h  element of a complex modal 

= j h  element of the normal modal vector 
= j h  normal modal v m o r  
= j h  element of thecomplex modal vector 
= j h  complex modal vector 
= j h  chara3eris:ic root 
=natural frequency. radis 
=damping factor 
=transpose of a matrix 
=inverse of a matrix 

approximated normal mode elements 

vector (0.0 or 180.0 deg) 

vector 

Introduction and Background 
ODAL vibration tests are c a r i d  out to experimentally M deterniine a set of modal parameters for the structure 

under :est. These modal parameters aie usually used to verify, 
determine. or improve some analytical model of the struc- 
ture.'-8 

Most of the approaches that use experimentally determined 
modal parameters for dynamic modeling of structures use one 

Received Lkc. I .  1981; revision received .Way 28. 1982. Copyrighi 
American lnsiiiuie o f  Acranaurics and Asironauiics, Inc.. 1982. 

'Associate Professor. Department of Mechanical Engineer!ng and 
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Mechanics. Member AIAA. 

or more of the following equations: 

~ M ] - ' I K 1 l 6 l = ~ ~ l 6 1  (1) 

I61 'IIW lib]= [ml (2) 

l61 'W Ii61= lkl (3) 

I61 'Icll6l= IC1 (4) 

In all these equations. the 16 I are the normal m o d a  even 
though, in practice, tbe measured modes are the damped 
complex modes. which in some cases can be very different 
from normal modes. .4s a matter of fact, in vibration testing 
and analysis work it is frequently assumed that damping levels 
are very small and/or the damping matrix is proportional to 
eithc7 the mass or stiffness matrices, an assumption that is not 
valid for many of today's complex structures. Such assump- 
tions and the lack of differentiation between normal and 
complex modes may be attributed to the lack of a tool to 
measure or  compute the normal modes. 

With the introduction of compute; technology to modal 
identification in the early 19?& in both frequency domainOJO 
and time domainii-" techniques, the question of normal vs 
complex modes started to need answers. In frequency domain 
approaches, even with light damping and well-spaced modes. 
users frequently encountered a scatter of the phase angles 
associated with the measured modal vector.!' Some resear- 
chers and users even went to the extent of questioning the test 
and data analysis procedures when the phase angles were not 
within *lodegat  0-180deg. 

It is to be noted also that measurement of phase angles in 
the frequency domain can be subject to high levels of errors 
espccislly in cases of high modal densities. This is due to the 
limited frequency resolution and the rapid change ia the phase 
angles arouqd the resonant frequencies. In some cases, the 
scatter of the phase angles of the modal vectors was due to the 
faa that the damping is nonproportional, and hence the mode 
shapes are complex. Time domain approaL,ies to modal 
identification, which contain no assumptions regarding the 
level or proportionality of damping, also indicated that 
structures, in many cases, possess complex modes. 

Normal Mode ,Appro~imation IO Complex Modes 
Normal modes are defined as modal vectors whose phase 

angles are either 0.0 or 180.0 deg. Such modes exist for ex- 
tremely simple struciures. that do not need any testing 
anyway. They also exist for structures with no damping or 
structures tailored with proportional damping. none of which 
represents today's complex structures. 

Unlike normal modes, complex modes ma: possess any 
phase angle distribution. Each element of the modal vector is 
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described by a real and imaginary pari or .in amplitude and 
phase angle relative tc- some arbitrary eimen:. 4 scatter in the 
phase angles of as much as t90.0 deg from 0.0or !8@.O deg is 
not uncommon. 

Recognizing the phase angle scamr for measured (complex) 
m o d e  and the need for normal modes for ure in equations 
such as (14). researchers and users have frequently tued 
normal mode approximation to complex modes. 

Figure la  shows an element of a complex modal vector $,, 
which is complex and can be expressed as. 

$i = R, +il, ( 5 )  

The approximate normal m o l e  element 6) corresponding to 
4, is 

(6a) 

where the assignment of a positive or negative sign, which is 
equivalent t o  0.0 or 180.0 d g  phase angle. depends on the 

6) = f \'Rj + 1; 

a) Complex mode element 

I m  / 

I /' 

angle 8, (8, =tan - I I l l  R, ) of the complex modal dement and 
its relation to some arbitrary angles a, and a: as shown in 
Fig. Ib. In other words. the phase angle 8, for the ap- 
proximated normal mode element 6, is assigned according to  
the equations. 

S,=O.O deg a,<e;<a,  (6b) 

0, = !80.0 deg Q, c8, <a2 (6c: 

It is enough to state that, irrespective of the choice of a, 
ana a*. it is unacceptable to assign two different signs to two 
dements of the approximated normal modal vector because 
the phase angles of the corrcspnding dements of the complex 
modal vector differ by a fraction of a degree. 

Such approximation can lead to erroneous and misleading 
results and conclusions. An example is the orthogonality 
check w n a e  the orthogonality of the measured modes with 
respect to the mass matrix is tested. Large offdiagonal terms 
may result not only because of errors in the mass matrix or 
inaccuracies in the identification process, but also because of 
the normal mode approximation to complex modes. 

NucrinlEurpk 
The purpose of this example is to show that even though all 

the ph,mcters used are exact: 
I )  Complex modes can be very different from normal 

mmes,  even for lightly damped modes and small non- 
proportionality in the damping matrix. 

2)  Large errors may result from assuming that normal 
modes approximated from complex modes are orthogonal 
with rcspect to the mass matrix. 

The system w d  in this example is a 10 degrce-of-freedom 
system. This system was constructed (simulated) by 
analyrically geneiating 10 normal modes af IO measurement 
stations of a simply supported beam. IO undamped natural 
frequencies. and a stiffness matrix for the system. Thc natural 
frequencies were selected corresponding to 10.0, 12.0, 15.0. 
'0.0, 24.0, 30.0, 36.0, 43.0. 46.0, and 50.0 Hz. Then, a 
proportional damping matrix (equivalent to 1 .Orno modal 
damping factor for all IO modes) arid the mass matrix were 
computed from the assumed information. 

To make the damping matrix nonproportional, the damp- 
ing elemen:s C(3,3). C(4.4). C(3.4). and C(4.3) were doubled. 
Complex modes, damping factors. and damped natural 
frequencies were computed for the system. Damping factors 
changed from I .OWo for all modes for proportional damping 
case to 2.6. 1.3, 1.2, 1.2. 1 . 1 ,  1.8, 2.9. 3.8. 1.7, and 1 . 0 1  for 
the nonproportional damping case. These damping factors 
are relatively small but nevertheless, some modes showed high 
levtls of complexity. Table 1 shows rhe two most complex 
mode shapes. modes 9 and I O ,  listed with the corresponding 
normal modes. Phase angles of as much as 98.9 and 74.8 deg 

Table 1 Cumparison of complex and normal m o d e  

9th mode 1 Or h mode 
Complex Complex 

Normal I= I.~!@?IJ Normal f =  I 04% 
f =46.00 Hz /=45.83 Hz /= 50.00 Hz f = 49.99 Hz 
f Amplitude Amplitude Phase * .Amplitude Ampliiude Phase 

26.00 53.27 64.3 56.00 57.95 175.1 
100.00 100.00 00 100.00 100.00 0.0 

- 136.00 144 46 - l s s . s  - 0.00 9.94 -72.9 
168.00 167.74 - 0.3 ,6.00 54.85 7 3  
- 98.00 144 19 136.7 - I00.M) 102.38 176.0 
- 26 00 113 5 s  - 9 3 9  I14.00 I I9 61 - 1.9 
136 00 13S.26 3.3 -98 00 102 24 172.3 

- 168 00 220.22 143.3 56.00 55.70 0.3 
98.00 188.00 -54 8 - 0.00 9.73 -74.8 
26.00 36.38 48 7 - 56 00 S8.22 173 0 
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for mwes 9 and 10 are noticed, respectively. Also. large 

modes. 
differences in amplitudes exis: between normal and complex I Y U )  

modes approximation :o complex modes, approximated l Y ( f )  
To illustrate the large errors that may result from normal 

normal modes were used in checking their orthogonality with 

1 - 1  

2m 

= A f l $ l , @ ~ + I n ~ ( t )  1 (8c) 
, = I  

respect t(i the exBa mass matrix. fhe  orthogonality matrix 
results for different values of aI and a? are 

1 .oooo 
0.0003 

I -0.oooo 

0.0010 

I 0.0010 I 1 0.0003 

3.00;3 I - 0.0597 

0.0071 

1 .oooo 1 '  0.0003 

0.0010 

0.0010 1 0.0003 

0.0013 

- 0.2n35 

-0.0124 

1 .oooo 
- 0.0002 

-0.oo09 

- 0.0002 

0.0033 

0.0138 

0.0003 

0.0178 

-0.0005 

1 .m 
- 0.0002 

- O.i)09 
-0.0002 

0.0033 

0.0138 

0.0003 

0.3549 

-0.0144 

I .m 
-0.0003 1.oooO 

0.0027 -0.0007 1.oooG 

0.0097 -0.0174 0.0013 

0.0054 0.0010 0.0029 

-0.0005 -0.0026 -0.0071 

0.2339 - 0.0639 - 0.0895 

0.0150 -0.013 -0.091 

1 .oooO 

0.0074 1.oooO 

.0.0136 0.0070 

0.0826 - 0.268 

0.0042 -0.0209 

1 .oooo 
-0.0003 1.oooO 

0.0027 -0.0007 1.oooO 

0.0097 -0.0174 0.0013 1.oooO 

0.0054 0.0010 0.0029 0.0074 

-0.0005 -0.0026 -0.0071 -0.0136 

-0.1791 0.0311 0.0073 -0.3108 

-0.1338 0.0016 0.0053 -0.0241 - 

In Eq. (7a) aI and a, were chosen as 90 and 270 deg. while in 
Eq. (7b) they are 135 and 315 deg. Errors in thc off-diagonal 
terms are as high as 23.29mo for the first case and 35.49% for 
the second case. 

Theory: Computation of Normal Modes 
In this section, two approaches are presented to compute 

normal modes from a measured set of complex modes. The 
required data are a set of nodal parameters such as may be 
identified from a modal survey test. These modal parameters 
are namely a set of compiex modes I $ l , ,  i=  1 ,  ... m and a set 
of corresponding characteristic roots X:, i =  1 ,  . .m (and their 
complex conjugates). The modal vectors have n elements 
where n>m.  which is a typical test situation. To compute the 
normal modes from this given set of complex modes. one of 
the following two approaches may be used. 

Approach I :  Using an Owrsizcd Maihcmaiical Modd 

From the given modal parameters. displacement. veloclty, 
and acceleration responses are formed according to the 
equations, 

I . v ( t ) I =  l $ i , e A l ' + l n l ( t ) ~  @a) 
.'m 

, = I  

1 .m 
0.0070 

0.1137 

0.0214 

1 .oooo 
0.03 16 

0.o004 

1 .oooo 
0.2265 

0.0254 

1 .m 
0.2281 1.oooO 

1 .oooO 

0.1672 l.oo00 

where n l ( f ) ,  n , ( f ) ,  n , ( r )  are added random noise of 
uniform distribution. These responses are then used in the 
statevector equation, 

(9) 

where 1x1 is now the system's htate vector containing the 
displacements and velocities responses. By repeating Eq. (9) 
for 2n time instants, the following equation is satisfied: 

[A= IAl[A (10) 

where [a and [m contain responses measured at the 2n time 
instants. From Eq. (IO) the  [ A ]  matrix can be identified as, 
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By computing matrix ( A ] .  the [M-'KJ matrix giws normal 
rnoda according to the eigenvalue equation. 

[M-'k'll4) = w: 14; (12) 

Natarsl!y, without any noise, the matrix [A is singular 
since the number of d e g r m  of freedem is larger than the 
number of modes preseat in the responses. A small amount of 
noise makes the inversion of [XI possible for the purpose of 
extracting modal information. For example, noise to signal 
ratios of as little as 0.000001 were usedl' to invcrt a 600 x 600 
matrin of a rank Gf 4 without signs of ill-conditioning on a 60 
bit word computer. Higher levels of noise may be needed for 
computers with less accuracy. 

Thc mechanism on which the success of this approach is 
based can !x explained as follows. 

The state vector's 2n free-response functions containing 
modal information from m structural modes of vibration can 
be expressed as. 

where [ p l  represents the m complex pairs of the systems 
independent eigenvectors. I f  noise-free responses are used in 
the identification algorithm, the math model must have 
exactly m d e g r m  of fr,dom for unique identification. I f  
more than m degrees of freedom are allowed, the (A matrix is 
singular. 

In expcrimental w r k .  however, measured responses always 
contain a certain amount of noise (or as in this case a small 
amount of noise is added on purpose). These nois): responses 
can be expressed as, 

2m 

I x ( r )  I = Ip lkeAe+ In(r )  I (14) 
k =  I 

In previous applications""' it was found that using noisy 
responses in the identification process, with the number of 
degrees of freedom larger than m,  yielded good results 
without encountering singularity. The results even improved 
as the mrth mcdel size was increased. The qualitative ex- 
planation for this situation is that the extra degrees of 
freedom act as outlets for the noise. In this case, the noisy 
responses can be expressed as, 

in which the noise is modeled as a combination of (2n-2rn) 
complex exponential functions. Since the value of m, the 
number of excited modes, IS a characteristic of the structural 
response and not the data analysis process, additional ex- 
ponential functions are allowed to represent the noise in the 
math model as n is increased. This results in a higher-order fit 
for the noise portion of the responses, reducing residuals that 
would otherwise be included in the signal portion of the 
responses. 

Approach 2: Using Assumed Modes 

equation 
The given set of complex modal parameters sdtisfy the 

Since we have only rn modes and the system has n degrees 
of freedom, Eq. (16) cannot be solved for i M - ' K  M-'C]. Let 
us assume that there exists a set of vectors 1 VI, and a set of 
characteristic roots s,, j = m +  I ,  m - 2 .  ... n. This ret of 
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assumed parameters are selemd such that 

where [ul is any vector of coefficients. Equation (17b) im- 
p l i a  that I Q I, and I $ I, for all I and J form a linear1:i in- 
dependent set of vectors. In such a case, it can be written that 

( j = m + I ,  m+2. ... n )  (IS) 

and Eqs. (16) and (18) can be solved for [ M - ' K  M-'CJ from 
which normal modes are computed according to Eq. (12). 

To illustrate the soundness of this second approach. 1st it  be 
assumed that there exists a hypothetical system whose n free 
response time functions are linear combinations o i  the iwo 
independent sets  of modes I $ I and I Q] . These responses can 
then be expressed as 

k = /  I = /  

The responses of Eq. (19) are typical of a second order 
dynamic system whose state vector equation 15 

T v l  I 1 [y ' )  
i i =  
?YJ A B J C Y J  

where the [ A ]  matrix represents the inertia-stiffness ip- 
formation and the [ B )  matrix represents the inertia-damping 
characteristics. 

I f  these responses, as expressed in Eq. (19), are io be used in 

any identification algorithm, the vectors 4 1 and I Q I and the 
characteristic roots X and s will be uniquely identified The 
identified properties of the initial set of modes I $ I chould be 
unique and independent of the assumed Q and s as long as the 
conditions of Eq. (17) are satisfied. 

An appropriate selection for the set sf assumed modal 
parameters would be from the structure's finiie element 
model. Higher snalytical nodes,  o!her than rbe measured 
ones, are highly :ecommended for such a use. 

I t  is extremely important to point out that i,M-'h' ] and 
[M-/CJ obtained from either approach are not unique since 
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-0.0438 1.oooO 

-0.0018 -0.0300 1.oooO 

AlAA JOURNAL 

0.0899 0.0999 1.oooO 

Table 2 Idmilfled cornpkx mode and normal mode 

Mode 9 Mode IO 
Theoretical Identitied Theoretical Identitied 

Normal I= 1.75% Normal r=  2.604,  Normal f =  I .+a% Normal (= 1.74% 
Complex Complex Complex Complex 

/=46.00 HZ j = 4 5  83 Hz j-46.00 Hz /= 45.93 HZ J =  50 00 HZ /= 50.00 HZ j= 50.00 HZ /= 50.00 Hz 
Ampliiude Amplitudc Phase t Amplitude Amplitude Phase ’ * Amplitude Aniplitude Phase * Amplitude Amplitude Phase 

-0.0464 l.m 
0.0228 . -0.0353 1.oooO 

100.00 
26 lr) 

- 136.00 
168.00 
- 98.00 
- 26.00 
136.00 

- 168.00 
98.00 
26.00 

100 00 
53.27 
144.46 
167.74 
144.19 
I13 55 
135.26 
220.22 
188.00 
36.38 

0.0 
64.3 - 155 5 
- 0.3 
136.7 
-98.9 

3 3  
143.3 
- 54.8 
48.7 

100 00 
25.18 - 136.76 
170.00 
- 97.65 
- 36.95 
- 167.51 

145 63 

94.81 
28.32 

100.00 
64.93 
172.63 
164.89 
135.86 
107.75 
140.38 
202 69 
164 94 
36.51 

0.0 
59.0 

- I54 0 
- 2.2 
132.6 

-1092 
- 0.3 
143 7 
- 9 . 7  
41.5 

!00.00 - 56.00 
0.00 
56.00 

- 100.00 
114.00 
- 98.00 
56 00 
- 0.00 

- 56.00 

100.00 
57.95 
9.94 
54.85 
102.48 
119.61 
102.24 

55.71, 
9.73 
58.22 

0.00 
175 1 
-72 9 

73 
176.0 
- 7.9 
172.3 
0.3 

173.0 
- 74.8 

100.00 
- 55.07 

0.39 
54.08 

-94 95 
109 92 
- 90.82 
59 42 
- 0.44 
- 55.36 

100.00 
57.27 
13.54 
53.19 
97.74 
116.:8 
94.78 
58.61 

401  
57.71 

0.0 
I 10 7 
- 74.4 

0.8 
175.6 
- 9.6 
171.5 
- I  I 

-48.1 
170 S 

they are functions of the introduced noise oi the assumed 
modes. Howwer the set of normal modes, corresponding io 
the set of given complex modes, was found to be independent 
of the introduced small levels of noise or the assumed modes. 

Simulated Experiment 
To test the validity of the theories presented in this paper, 

the 10 degrets-of-freedom system previously discussed in the 
section on numerical example is used here as a simulated test 
structure. Response time histories containing contribution 
from the last four modes measured at the 10 stations were 
generated. The last four modes were sclc -XI because the last 
two modes show i high level of complexity. Simulated 
measurements noise was added to these responses, with a* 
noise/signal rms ratio of 2070, to represent conditions in a 
real vibration t a t .  From these responses, the complex modes 
and characteristic. roots were identified. using the time 
domain approach.Ii Ncrmal modes were then computed 
using the two approaches presented here. A noise to signal 
ratio of O.ooOo1 was used for Eqs. (E). The assumed modes 
approach produced results identical to those of the oversized 
math model approach. 

Table 2 lists the identified complex modes and the com- 
puted normal modes for the last two modes. .4 close 
examination of the computed normal modes, i n  comparison 
with !he theoretical ones, indicate the validity of the ap- 
proaches presented. 

Using the identified complex modes and !he computed 
normal modss, the orthogonality check matrices are. 

r l~m 1 
(20a) 

In Eqs. (2Oa) and (2Ob) approximated normal modes were 
used with (90. 270 deg) and (135, 315 deg) foi (a l ,  a2), 
respectively. In Eq. (2013 the computed normal modes were 
used. Errors of 21 and 48% are noticed in the off-diagonal 
terms for cases a and b, respectively. while the ma?timum 
error for case c was only 5 To. 

Conclusions 
I t  is shcwn in this paper that even for low levels of damping 

for structures with nonproportional damping, complex modes 
can be very different from normal modes. In such cases, 
normal mode approximation to ccaplex modes may tead to 
large errors in mass-weighted orthoaonality checks o r  in any 
other use of these complex modes approximated as normal 
modes. 

A technique is presented to compute normal modes from 
measured complex modes. Computed normal modes 
elinmate possible errors that may result from using normal 
mode approximation to complex modes produced by non- 
proportional damping. 
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Nomtndr:ure - ( n  x n )  analytical damping matrix 
= ( n  x n )  exact damping matrix - ( n  x n)  improved damping matrix 
-J--T 
= ( n  x n )  analytical stiffness matrix 
= ( n  x n )  exaa stiffness matrix 
= ( n  x n )  improved s t i f h a s  rnatri.4 
-number of measured i n o d e  
= ( n  x n )  analytical modal mass matrix (diagonal) 
= ( n  x t i )  analytical mass matrix 
= ( n  x n )  exact mass matrix - ( n  x n )  improvrd mass matrix 
=number of degrm-oi-freedom of math models - d h  normal modal vector (n  elements) 
= ith complex modal vector ( n  elements) 
= ith damping factor 
= hh characteristic root 
=damped natural frequency 
=natura! frequency 

Introduclioa 
UE to the increasing complrxity of modern aerospace, D and some nonaerospace structures, and due to the 

iiature. sensitivity. and sophistication of the missions of such 
structures, an accurate mathematical model has become a 
necessity for successful performance. Such models are nceded 
for responses and loads prediction, stayility analysis, and 
control system design. 

Past. and sometimes current, common practice. in sr'*e of 
the advanced state-of-the-art in both finite element . d 
structural dynamic identificatkn. in arriving at a dependat,,c 
mkhematicd model was done primarily by trial and error 
approach. An analyst, using some modal test data, adjusts his 
or her model. using personal judgment and expxience, io 
make it fit the available modal test data. During the last three 
decades there have been continuous efiortr by researchers and 
practitioners in the area of dynamic modeling of structures 
usinp identified modal parameters. Tht .wvey paper,' 
coverAng work done in the 1960's. pointed < j i l t  a need to 
improve the state-of-the-art of dynamic modeling.. 

Presented L( Paper 82-0770 at the A I M  /ASMF/ASCE/AHS 23;d 
Struaura. Struaurd Dynamics and Materials Confcrencc, New 
Orleans. La., May 10-12, 1982; submitted May r2, 1962; revision 
received Scpt. 17, 1982. Copyright 0 American Institute of 
Aeronautics and Asironrutics. Inc.. 1982. All rights reserved. 

'Assodue Profesmr, Department of Mechanical Engineering and 
Mechanics. Mcmkr A I M .  

Subsequent work in dynamic modeling from test data can 
be divided into two categories. The first category uses only 
experimental data to derive the mass. stiffness, and damping 
matrices.*4 The other category d d r  with using idmtificd 
modal data to improve an existing, sometimes larger, 
analyticai model.sJ 

in 
dyaamic modeling is that the measured modes satisfy the 
theoretical rquiremn-t  of weighted orthogonality with 
respea to the m a s  and stiffness matrices. Such a rquireme.it 
can only be s a t i s f d  assuming no or proportional damping 
and a symmetrical stiffness matrix,* in which a case damped 
and normal modes are the same. For simpler structures the 
measured modes (complex modes) are very close to the 
normal modes. For more complex structures, the complex 
modes can he very much different from the normal modes. 
Attempts to use these complex modes, as normal modes, for 
satisfying the orthogonality requirement may lead to adverse 
effects on the process of dynamic mode!ing. 

Complexity of modes, indicated by a scatter in the phase 
angles associated with the modal vector, is becoming more 
noticeable to  today's dynamicist due to the complexity and 
dampirig characteristics of modern striiciures. Naturally, such 
a scatter in the phase angles could bc due to measurement 
errors, erroneous identification, nonlinearities, as well as just 
the mere fact of having a case of complex modes as a result of 
the prtsence of nonproportional dainpiiq. 

For structures with nonproportional damping, it is extreme- 
ly difficult to measure normal modes even by using techniques 
such as multiple-sinedwell. since this very technique is based 
on the assumption of proportional damping.1° Using 
measured modes directly in the qua t ion  of orthogonality 
rquircment can r au l t  in large errors in the off-diagonai 
:nms.".l2 Such errors can be Due to the fact that the structure 
has complex moda (nonproportional damping) among other 
reasons. 

The approach proposed herein is designed to circumvent 
using complex modes as normal modes, when correcting the 
analytical mass matrix. Instead, the procedure allows for the 
computation of normal modes from the given set of measur:d 
complex modes. 

Theory and Procedure 

One of the imponant and basic relations often 

In this procedure, it is assumed that the structure under 
consideration has an analytical mathematical model that 
needs improvements. Such a model can, as in mqst c w s ,  be a 
finite element model. furthermore. it is assilmcd that the 
structure has been tested in a modal survey test for the 
identification qf its modal parameters. The following in- 
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fonnrlion is required for the procedure of improving the 
dytialmodd. 

1) Modal lest Data. It is assumed that a complete modd 
swey t a t  has ka, conducted and that the followiw test datr 
M available: a) the complex modal vectors ICi]. i = l ,  ... m, 
W U ~  at R meuuranent statbas where n>m; b) the 
damped nuura! frquenaa (o,,)~. i = I .  ... m; and c) the 
damping factors 

2) Anrlytiol Modd Dam. From the analytical modd. the 
fdlowiry information is rquired: a) an n x n  mass matrix 
[MA] oc the I )  dements of the modal mass murix ImA]; b) the 
IWKMJ m o d e  i = l ,  . . a ,  at then masurancnt stations 
of the m0d.l survey t a t ;  and c) the natural frqucacia (0, )I, 
i= 1, ..A The preceding iafonnotioa will k used to compute 
improved mass and dffness matrices [MI and 14 and a 
damping matrix [CJ. 

campmahot [M-txl 4 [nl-tc] 
Assuming that the stfucture unda consideration is linear. 

the measured nodal parametas satisfy the following 
quacim: 

i= I ,  ... m. 

fM-’K M-ICJ [ ~ ~ i ] = l - h $ l l - . .  ( i = f , 2  ,... m )  ( I )  

whae AI is the ilh characteristic root of the system which is 
dated to ihe ith damping factor and the dh damped natural 
frquency through the equation 

Equatioa (1) represents n x m  complex equations or 21 x m  
real cquuioos. Thae quat iom are not suffiaent IO solve for 
system’s [M- IK M - l q .  

!%ace no informarion 5 available to correct the analytical 
modd beyond the frquency range over which the modal test 
was conducted. the analytical higher mod& will be assumed to 
also satisfy Eq. (1). This will give the following set of 
equations: 

where A, in this case is: 

(4) 

It is to k noted here that most analytical modds do not have 
damping information. It is reasonable to asume that t h e  
higher analytical modes have a damping factor quai to the 
average damping factor of the m measured modes 

Equation (3)repre~nts  h x  ( n - m )  quations. Combining 
Eqs. (1) and (3). the 2n’ linear equations can be solved for 
[M-lKM-Iq. 

Corpmdom of Exytimmul Norul Moda 
The purpose of this sestion is to compute the set of normal 

moda. corresponding IO the set of measured complex modes, 
for in correcting the mass matrix. This step is essential in 
case the measured modes indicate the presence of non- 
proportional damping in the stru-ture under test. This can be 
indicated clearly by large scatter in the phase angles associated 
with the measured modal vectors, a phenomenon found in 
several of today’s modem complex structures. Such a 

compkxity of measured modes is especially noticed in the 
hi@KY modcs that ueaecdcd b d l y  to inaeue tbe frequcacy 
range of the dynamic modd comuioa. It is the author’s 
opinion t b u  any  effort to  use annpla mode. approximated 
as wnrul moda, to correct an d y t i a l  mass matrix m y  
wonen rather than improve the ~ a l y t i d  m w  murix. 

Two rpprorhal’ were pmented to compute normal 
. moda from masurrdcomplex modes, omof which is similar 
to tbc method premed in the prrading section to compute 
[M-’KM-’C].  Tbe [M-’Kl nutrix can yidd a set of normal 
moda. corrnooadinl to the set of measured complex modes. 
through the dation 

IM-’Kl19 1 =d!9l**. (6) 

This eigcnvaluc quation will give n eigenvalues and n 
&envaton. The fm m of thesc dgenvcxtors are the m 
oomputcd normal mak, compendia# to w ~ezsufcd 
compkx modes. The remainder agenvcaon wih be the higher 
anrlytial modes used in Eq. (3). 

CwrrQ.dclwMuNah 
Several ppprorchcs can k used ro correct the m a s  or 

stiff- matrices. The approach based on minimum 
changes.’ gives the corrected m9- ; matrix as 

@ A  1 = Id W A  1161 

IM = I M A  1 A ~M~l l4[mAl  -‘If- mAllm,J -‘ I61 ‘ [ M A 1  

where IO] is (n x m )  “measured” normal modes. and [mA] is 
m x m .  
The lpptorch used h a d n  is simply based on computing a 

mass murix that utisfiet the orthogonality condition for the 
measured normal modes and the higher analytical normal 
modes, i.e.. 

whae  the columns of [O] in this case are the eigenvectors 
computed from Eq. (6). 

-0r-dsulhreulDvpirlM.trka 
A h a  computing [M-IK M - I q  from Eqs. (1) and (3) and [w from Eq. (7). the stiffness and damping matrices ca.. be 

given by 

la= lMIM-‘c! (9) 

and this completes the computation of corrected or improved 
mass. stiffness. and damping niafrices. 

Cltlerir for Evaluating Dynamic Modd Improvements 
The question of judging the success of any  dynamic model 

improvements technique is quite a difficult one. Should the 
changes to the analytical model k minimum? Should the 
improved model represent a physical system rather than j u t  a 
set of numbers? What about ending with riegative masses or 
negative stiffness in the improved mass matrix? The answer to 
the question of success should be very much dependent on the 
intended w o f  the impoved model. 

In the work reported here. the goal of improving the 
analytical mathematical model is to make the improved model 
respond to any input as close as possible to the response of the 
exact model (real structure) over the correction frequency 
range. This makes the improved model suitable for responses 
and loads prediaiGn and control system design but not for 
structural modifications. If the improved model is to be used 
for structural modifications, the number of degrees-of- 



S. R. IBRAXM A I M  JOURNAL 

I 9.999 10.002 9.998 2.00 I .OD 2.00 Frequency 
I 11.996 12.142 11.998 2.00 I -00 2.00 -of 
3 14.997 15.204 14.W 2.00 1.00 2.00 m&lte%l 
4 19.9% 19.29 19.9% 2.00 I .OD 2.00 h 

s 23.995 23.31 I 23.91 I 2.00 I .OD 1 .a0 
6 29.994 31.683 31.683 2.00 I .oo 1.00 
7 35.993 3 3 . w  33.740 2.00 I .a 1 .a0 
8 42.991 41 .m 4) .om 2.00 1 .00 1 .00 
9 45.991 4433 4 b . x  2.00 I .00 1 .a0 
IO 49.990 (s.llY 4.104 2.00 I .oo I .a0 

Eua h a i j l i a i  
Mode Ampli:udt &ur.dq AmHndC ph8C.dq Amp(it* ph.u.dq 

100.00 0.0 loa.0 0.0 100.00 0.0 
1n .w - 0.4 i48.49 0.0 1n.m - 6.4 
ISS.56 - 19.7 141.8s 0.0 15s.56 - 19.7 
116.55 -4S.J 93.7! 0.0 116.SS -453 
81.11 - 93.2 b.91 0.0 81.11 -93.2 

2 81.11 - 156.7 29.06 1m.o 81.11 - 156.7 
116.55 lSS.6 95.00 180.0 1 1 6 3  1SS.6 
155.56 129.8 134.79 I 80.0 IS5.M 129.8 
in.m 1163 141.71 1m.o 1S7.00 I 163 
100.00 110.1 101.3s 1m.o tm.m 110.1 

IQ).aO 
74.24 
51.66 
99.08 
u.m 

4 63.70 
99.01 
51.66 
74.24 

to0.m 

0.0 - 18.0 - 150.3 
166.7 
1163 

6.4 - 43.8 - 86.8 - 140.9 
122.9 

100.00 0.0 1W.a) 0.0 
10.32 0.0 74.24 - 18.0 
43.19 1m.o s1.66 - 150.3 
91.6s 1m.o 99.a 166.7 
44.89 10.0 63.70 1163 
43.48 0.0 63.10 6.4 
89.33 0.0 99.06 -43.8 

72.7s 1m.o 74.24 140.9 
106.09 1m.o 100.00 122.9 

42.40 0.0 s1.66 - 86.8 

freedom of the analytical modd should k larger than the 
number of elements in the mepsurd modal vectors. This will 
require the computation of the unmasurcd modal vectors’ 
dements. That is a point t o  k considered for future in- 
vestigations. 

IllwntivesiurlrttdExpdmcnt 
The purpo~ of sdeaing a simulated experiment, rather 

than a red experiment. b to t a t  the effectiveness of the 
proposed technique under controlled conditions. In this 
simulated study an exact matbematid modcl is available as a 
refeiencc for comparison. This exact matbcmaticcrl modd is 
comrpted with random errors to produa an analgical modd 
which is to k corrected to produa the improved 
mathematical modd. A comparison is lata conduaed k- 
tween the improved, analytical, and exact marhematical 
models. 

Eua Modd 

derived through assuming ten complex modes of the form 
The exact model pouases ten dcgrccsof-freedom. It is 

ikr tG,& =sin - 
I1 

i ( k + I ) r  + j0.5sin - 
I1 

(i=1,2 .... 10 and k=1.2 ,... 10) (IO) 

The ten moda were assumed to havk undamped natural 
frequencies of IO, 12, 15, 20, 24,30, 36.43.46. and 50 and a 
damping factor of 2.0% for all ten modes. 

Using the preceding m W  informati=, [Mi‘KE] and 
[&ICE] were computed. From (M,g’K,] the normal modes 
w e r ~  computed and then used in the equation 

A . . ) l d d W  
Random mors ranging between I . O C  for first mode to 

*lO.O’h for the tenth mode were introduced in the ten un- 
dampcd natural f r q u e n a a .  Random errors of t 5 . O %  were 
introduced to exact normal modes. Thesc comped modal 
paramaas were then wd to calculate [M;’KA M;/CA] for 
the analytical mathematical model with proportional damping 
equivalent to 1.0%. The modal mass matrix [m,] from the 
exacl mod4 was used with *S.OC random mors to calculate 
W A 1 .  I K A I * ~ d I C ~ l *  

InyoVedMold 
E.xact modal paramans (complex mode shapes. damped 

natural frequencies, and damping factors) of the first four 
modes h a c  are considered as the measured modal paramam. 
These foir  modes togahn with the six higher analytical 
modes were used to correct the analytical model as previously 
described. 
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Table I show tbe exact. analytical. and improved natural 

fmucndes and damping factors. The second and fourth 
mode shapes for the exact. .nnlyticpI. and improved 
mothcmplical madds u e  listed in Tabk 2 for comparison. 
Fiitpa la and Ib  show the fourth ststion raponsc of the 
analytical modd .ad improved modd, rapct ivdy,  ploctcd 
on tbe MCI response due to an impulse at the first station. 
Thee figures show responses over the whole frequency range 
(0-60.0 Hz). While noticeable improvements are produced 
over the comaion  frequency m e  (0.20.0 Hz). no adverse 
effects resulted from the improvement p r m  over the 
remainder of the frequency range. 

codrrriw 
A dim technique to  w experimental and analytical 

modal parameters to improve an existing analy.ical modd is 
presented. The corrected modd's r a p o w  resembles the exact 

modd's response more m d y  than the a d y t i a l  modd 
over the ftcquaKy Mttof t h e m a s u r d  m0d.l test data. No 
dwse effects 011 tbe improved system's raporrses resulted 
beyoad tbe COmdjoIl frequeacy range. Built into the 
llprithm ~~ is the computuion of the wrmd moda. 
QwlcIpoldinl to  tbe xt of m a ~ u r e d  complex modes, that are 
urcd for mur matrix COCtCCRiOll. This fa ture  promises to 
diminue tbe enon thu may result from using approximated 
canph modes as normal moda for ams matrix correction, 
w h i  nulra this technique 8 d V r n ~ u s  wben dealing with 
awpkx structures Pouaring, not aecasPri!y high lcvds of 
Cirmw, but a high degree of mproportionality in damp 
in& 
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Abstract 

A time-domain l i nea r  modal i den t i f i ca t i on  
technique i s  appl ied t o  i d e n t i f y  some h igh ly  non- 
l i nea r  dynamic systems. The modal concept i s  used 
t o  i d e n t i f y  such nonlinear systems w i th  the under- 
standing tha t  the resu l t i ng  modes are only a mathe- 
matical representation o f  the series solut ion o f  
the nonlinear system under consideration. tiatu- 
r a l l y  these iden t i f i ed  modal parameters are not 
unique, f o r  nonlinear systems, since they are func- 
t ions o f  the systems' amplitudes and hence referred 
t o  as quasi- l inear. The approach presented i n  t h i s  
paper can be useful i n  p red ic t ing  s i g m  o f  non- 
l i n e a r i t i e s  when l i n e a r i t y  i s  ass&. It can also 
be used t o  analyze and understand types o f  non- 
1 inear- Lies o f  nonl inear systems thmugh successive 
i den t i f i ca t i ons  a t  d i f f e r e n t  l eve l s  o f  responses. 

Nomenclature 

frequency i n  Hz 
force i n  restor ing force element i 
mass 
timber o f  aegrees o f  treedom of the 
i d e n t i f i c a t i o n  math model 
number o f  harmonics 
measurements noise vector 
modal vector f o r  noise representation 
number o f  degrees o f  freedom o f  system 
under i den t i  f i ca t ion  
number o f  degrees of freedom allowed for 
measurements noise 
the i t h  charac ter is t i c  root f o r  noise 
representation 
l i nea r  system response vector 
nonl inear system response vector 
disp?acement i n  restor ing force element 
the i t h  charac ter is t i c  roo t  for  harmonics 
the i t h  modal vector o f  harmonics 
the i t h  damping fac to r  ( Z )  
angular displacement 
the i t h  vector i n  the systems response 
matrix [o] 
the i t h  l i nea r  (o r  equivalent l i n e a r j  
modal vector 

Ibrahim T ime  h ina in  modal i d e n t i f i c a  
technique 
number o f  modes allowed i n  the ident 
ca t ion  math model 
s ingle degree-of-freedom system 
two degrees-of -f reedom sys tern 

ion  

f i -  

I n  troduc t i on 

With the increasing complexity o f  modern aero- 
space and non-aerospace structures, accurate 

*Associate Professor, Member AIM 

dynamic i d e n t i f i c a t i o n  has become a necessity. 
Dynamic i d e n t i f i c a t i o n  i s  usual ly car r ied  out 
through iden t i f y i ng  the structure's modal param- 
eters. These m a l  parameters are required f o r  
modeling, responses and loads predict ion, s t a b i l  
analysis and control  system design. 

i d e n t i f i c a t i o n  techniques, t o  match the str ingen 
The demand f o r  nure sophist icated dynamic 

t Y  

accuracy requirements, f a r  dynamic design and per- 
formance analysis. has resul ted i n  numerous 
research e f f o r t s  i n  t h i s  area during the l a s t  two 
decades. 

Presently. f o r  dynamic i den t i f i ca t i on ,  a 
s t ruc tu ra l  dynamicist has a choice behreen fre- 
quency domai n-techniques' ,* and time-docnain tech- 
niques. 3-11 Although qu i te  d i f f e r e n t  and t h e i r  
meri ts are s t i l l  and w i l l  be debatable f o r  a while, 
the two approaches so far have been dealing w i th  
on ly  l i n e a r  systems. 

There have been few e f f o r t s  f o r  the dynamic 
iden t i  f ica  t ion o f  nonl i near dynamic systems. 
Unfortunately these e f f o r t s  are 1 i m i  ted t o  1 wnped 
parameter systems and are s t i l l  academic and f a r  
away f r o m  being applicable t o  rea l  structures tha t  
possess some unknown forms of non l inear i ty  as wel l  
as unknown number o f  degrees o f  freedom. 

f i c a t i o n  has been found t o  be a reasonab?e assump- 
t i o n  f o r  many applications. This i s  t rue  where 
amplitudes o f  v ib ra t ion  are small or when i n  gen- 
eral  the leve ls  o f  non l inear i t ies  are small and can 
be ignored. On the other hand, some applications 
require serious considerations f o r  t h e i r  high 
leve ls  o f  non l inear i t ies  where assuming l i n e a r i t y  
can be h igh ly  erroneous. An example o f  such app l i -  
cat ions i s  the case o f  large amplitude responses o f  
panels subjected t o  acoustic and nechanical 
exci tat ion.  

The e f f o r t s  presented i n  t h i s  paper are f i r s t  
t o  study the app l i cab i l i t y  o f  a l i nea r  modal iden- 
t i f i c a t i o n  technique t o  nonl inear systems. 
term quasi- l inear used i n  t h i s  paper i s  meant t o  
perform the i den t i f i ca t i on  a t  one cer ta in  leve l  o f  
exc i ta t .  n o r  response. 
may be .... nexistent f o r  a nonlinear system as a 
whole, the m d a l  concept w i l l  be used here and i t  
i s  understood that the i den t i f i ed  modal parameters 
w i l l  be funct ion of the leve l  o f  response of the 
sys tem. 

The second purpose o f  t h i s  paper i s  t o  iden- 
t i f y  the type o f  non l inear i t ies  i n  the system. 
This can be at ta ined by i den t i f y i ng  the quasi- 
l i nea r  modal parameters o f  the system a t  d i f f e r e n t  
leve ls  of responses and study the changes i n  these 
modal parameters. 

The assumption o f  l i n e a r i t y  i n  dynamic iaent i -  

20-26 

The 

Al thoughthe modal approach 
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The l i nea r  nadal i d e n t i f i c a t i o n  method 
selected here f o r  the quasi- l inear i d e n t i f i c a t i o n  
o f  nonl inear systems i s  a time-domain technique 
re fe r red  t o  as the Ibrahim Time Domain (ITD) 
technique,fll Appendix A. 

examples used i n  t h i s  paper are lumped parameter 
systems. the nethod i s  appl icable as wel l  t o  d is -  
t r i bu ted  parameter systems. The i d e n t i f i c a t i o n  
technique i s  not dependent on the nwnber o f  degrees 
o f  freedm o f  the system under consideration. The 
iden t i f i ca t i on  model a l l w  any la rger  number o f  
degrees o f  freedom such that a l l  m d a l  information 
i n  the responses can be ident i f ied .  

I t  i s  t o  be noted here tha t  although the 

Theory: Linearized Iden t i f i ca t i on  Model 

For l i nea r  systems, the IT0 technique i s  based 
on tha t  the free-decay responses cf a structure 
{ x ( t ) )  are l inear combinations of the exci ted 
modes : 

where  {$,I i s  the i t h  modal vector, hi i s  the 
i t h  charac ter is t i c  root, p i s  the number of modes 
excited i n  the responses (2p complex conjugate 
modes), and n ( t )  i s  measurements noise. 

o f  an oversized iden t i f i ca t i on  model1’ t o  reduce 
e f fec ts  o f  measurement noise on the i den t i f i ed  
parameters. 
degrees o f  freedom i n  the i den t i f i ca t i on  model 
ilnproves accuracy o f  i den t i f i ca t i on  since the extra 
degrees o f  freedom ac t  as ou t l e t s  f o r  the noise and 
equation (1) becomes 

The l i nea r  IT0 technique a lso  uses the concept 

It was shown tha t  al lowing m r e  

where m i s  greater than p. 

l inear ized i d e n t i f i c a t i o n  model f o r  nonl inear 
responses. The free-decay responses o f  a p 
degrees-of-freedom nonlinear system can be 
expressed as: 

This same concept can be used t o  develop a 

k=l 

where i n  t h i s  case the f i r s t  set  o f  mdes represents 
the fundamental solut ions and the second se t  repre- 
sents the hannonics. 

freedom (m z p) are allowed i n  the i d e n t i f i c a t i o n  
model then equation ( 3 )  becomes 

( 3 )  
i =I 

If only a f ! n i t e  number o f  m degrees-of- 

where 

p + n + q = m  

With the understanding tha t  usual ly the ampli- 
tudes o f  higher harmnics get smaller f o r  higher 
orders, the number o f  high harmonics to  be i den t i -  
f ied w i l l  be dependent on i den t i f i ca t i on  accuracy 
and leve ls  o f  noises i n  the responses. 

Applications 

To t e s t  the v a l i d i t y  and a p p l i c a b i l i t y  o f  the 
preceding theory, the proposed approach i s  appl ied 
to three d i f f e r e n t  nonlinear systems. 
systems were selected t o  represent single-degree-of- 
freedom systems w i th  and without damping and a 
damped two-degrees-of-freedom system. The non- 
l i nea r  terms are res t r i c ted  t o  the s t i f fnesc  terms 
whi le the damping terns were kept l i nea r .  
l i nea r  s t i f fness ,  so f t  and hard springs are repre- 
sented. High non l inear i t ies  were achieved through 
having the nonlinear term coe f f i c i en t  la rger  than 
tha t  o f  the l i nea r  te rm and o r  having la rge  amoli- 
tudes of responses. 

The sinulated responses o f  these systems were 
obtained by numerically in tegra t ing  the nonlinear 
d i f f e r e n t i a l  equations w i th  sane speci f ied i n i t i a l  
displa.ynents and zero i n i t i a l  ve loc i t ies .  A 
f ou r th  order Runge-Kutta w i th  var iable step method 
was used for the numerical integrat ion.  

These 

For non- 

S im la ted  Systems 

Three systems are simulated and i d e n t i f i e d  
These systems are: using the preceding theory. 

1. A Simple Pendulum: 

The nonlinear d i f f e r e n t i a l  equation o f  motion 
o f  the simple pendulum, Fig. 1, i s :  

9 + 0.04116 + 4,‘ s i n  -? = 0 (5bl 

where equation (5a) represents the undamped case 
w i t h  a l i nea r  natural frequency o f  1.0 Hz and 
equation (5b) has a 1 .OX equivalent damping factor.  

tudes Bo of n/6, n/3, n/2, and 2n/3. 

2. A Mass-Spring System: 

Responses were simulated f o r  i n i t i a l  ampli- 

A single-degree-of-freedom system, Fig. 2, was 
designed t o  have hardening spring w i th  an equiva- 
l e n t  l i nea r  frequency o f  1.0 Hz and eouivalent 
l i nea r  damping o f  1.0%. 
motion o f  such a system 
cases are: 

The Gverninq equations o f  
f o r  undamped and damped 

2 y + 0.04.ry + 4n (y 

= o  

3 + 2.0y ) = 0 
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Responses were simulated f b r  i n i t i a i  ampli- 
tudes o f  0.5, 1.0, 1.5 and 2.0 un i ts .  

3. Two-Degrees-of-Freedom System: 

To simulate a multi-degree-of-freedom non- 
l i nea r  system w i th  damping, a nonlinear system w i t h  
two masses, three l i n e a r  viscous dampers and three 
nonlinear springs, Fig. 3. i s  analyzed. The two 
springs were selected w i th  cubic non l inear i ty  
representing hardening springs w i th  the coeffi- 
c ients o f  the nonlinear term being 50 and l0dX of 
t ha t  o f  the l inear  term. The equations o f  motion 
of such system are: 

(7)  

Free responses due t o  i n i t i a l  displacements 
were obtained by numerically in tegra t ing  equation 
(7). Two sets o f  i n i t i a l  condit ions were used. 
The f i r s t  was t o  represent small amplitudes 
10.3, 0.11 and the second se t  was t o  simulate 
larger amplitudes {3.0, 1.0). 

Iden t i f ica  t ion 

The numerically integrated responses were 
sampled a t  the ra te  o f  50 Hz f o r  the simple pendu- 
lum and the spring mass system and 100 Hz f w  the 
two-degrees-of-freedom system. Four seconds 
(200 samples) were used f o r  the i d e n t i f i c a t i o n  o f  
both the SWF and the TOOF systems. 
modes allowed i n  the i den t i f i ca t i on  program was 
changed f r o m  1 t o  6 f o r  the SDOF systems and f r o m  
1 to  12 f o r  the TWF system. Two samples were used 
t o  create the pseudo stat ions f o r  the SWF systems 
and s i x  samples_for the TDOF system. The parameter 
f o r  delaying [$I from [$I was taken as two 
samples f o r  the SDOF system and four f o r  the TDOF. 
This means an a l ias ing  frequency o f  12.5 Hz f o r  a l l  
cases. 
the numerical integrat ion,  cases w i th  0.03 and 1.0% 
noise/signal r a t i o s  were considered. 

The number o f  

Unaccounting f o r  the errors a r i s ing  from 

Oiscussions -- 
1. The Undamped Case (SOOF1 

For the simple pendulum and single mass-spring 
system, the I T D  was able to  i d e n t i f y  very accu- 
;*ately the fundamental frequency and also harmonics 
up t o  the n in th  harmonic. Tables 1 and 2 l i s t  the 
i den t i f i ed  harmonics f o r  the two cases and Figs. 4 
and 5 show these iden t i f i ed  frequencies. Tabie 3 
l i s t s  i den t i f i ed  damping factors f o r  the undamped 
simple pendulum. 

Tables 4 and 5 l i s t  the leve l  o f  con t r ibu t ion  
of each harmonic showing the extremely smal l  leve ls  
o f  con t r ibu t ion  o f  higher harmonics. 

Figures 6 aed 7 show the i d e n t i f i e d  funda- 
mental frequencies, as functions o f  the i n i t i a l  
anplitude, and their r e l a t i o n  t o  the theoret ical  
frequency o f  the nonlinear system. The same 
resu l t s  are also shown i n  Tables 6 and 7. 

f o r  higher leve ls  o f  nonl inear i t ies.  This also i s  
evident from determinant p lo t s  shown i n  Figs. 8 
and 9. For smaller i n i t i a l  amplitudes, s m l l e r  
nonl i nea r i t i e r ,  the determinants decreased a t  a 
fas te r  ra te  ind ica t ing  a lesser  number of 
harmonics . 

As expected more harmonics are i d e n t i f i a b l e  

2. The Damped Case (SOOF1 

The i d e n t i f i c a t i o n  technique iden t i f i ed  a 
strong fundarental frequency and very weak signs of 
a t h i r d  h a m n i c .  Without noise added t o  the 
responses, ear ly  signs o f  s ingu la r i t i es  were 
noticed when the nunber o f  degrees o f  freedom was 
increased beyond two, an ind ica t ion  o f  e x t r e m l y  
small nonident i f iable higher harmonics. 

For noise-free data la rger  number o f  degrees- 
of-freedom i n  the i d e n t i f i c a t i s n  model revealed the 
changing frequency due t o  thz  decreasing amp1 i tude 
o f  response due t o  damping. The accuracy o f  the 
i den t i f i ca t i on  program detected the change i n  fre- 
quency between the measurement response and the 
pseudo masurements. This phenomenon was no t  found 
when a small amount o f  noise, 1.0%. was added t o  
the response. This can also be avoided by using 
shorter time re-:,rds f o r  i den t i f i ca t i on .  

3. The Two-Degrees-of-Freedm System 

Equations (7) were integrated w i th  two sets o f  
i n i t i a l  condit ions (0.3, 0.1) and (3.0, 1.0). 
These are only the i n i t i a l  conditions; responses i n  
the second set had maxinum displacements o f  3.0 f o r  
both measurements. 

I den t i f i ca t i on  resu l t s  showed no more than two 
modes f o r  the small displacement case. For the 
la rger  displacemnt case (high nonl i nea r i t i es ) ,  the 
two fundamental frequencies are much higher than 
the l i nea r  case - a resu l t  t ha t  i s  expected from a 
system w i th  hard springs. Also, four  other har- 
monics appeared i n  the i d e n t i f i c a t i o n  output. 
Tables 10 and 11 s u m r i t e  the i d e n t i f i e d  quasi- 
l i nea r  modal pdrameters f o r  the system. 
shorn tha t  f o r  the large amplitude case, the f i r s t  
two modes have the la rges t  contr ibut ions to  the 
responses, also ind ica t ing  +ha+ these two modes are 
the fundamental modes. 

For be t te r  underebanding o f  the resu l t s  i n  
Table 11, the l i nea r  modes o f  the system would have 
resul ted i n  modal con t r ibu t ion  vectors o f  
{0.2 0.21 and iO.1 -0.1) f o r  the small 
amplitude case and {2.0 2.0) and (1.0 -1.0) 
f o r  the larger amplitude case. For the nonlinear 
i den t i f i ed  modal vectors, the amplitudes o f  the 
fundamental modes d id  not change much from the 
l i nea r  amplitudes, but large changes i n  the phase 
angles occurred. 

Table 11 
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Concludlnq Runarks 

The tlm-domain, l inear  modal i d e n t i f i c a t i o n  
technique I s  found t o  be useful for the quasi- 
l i nea r  nodal i d e n t i f i c a t i o n  o f  nonl inear dynamic 
system. Such approach can be s e d  t o  detect non- 
l l nea r i t i es ,  and t h e i r  types, is', structures by per- 
f o m l n g  the i d e n t i f i c a t i o n  a t  d i f f e r e n t  leve ls  o f  
response and study the changes i n  the i d e n t i f i e d  
modal parameters. 
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APPENDIX A 

Background - ITD Hodal Ident i f icat& 
Tec hn 1 que 

The ITD modal i den t i f i ca t i on  technique i s  
based on the fac t  that  a vector of free-decay 
responses of h measurements, and or  pseudo 
measurements, and containing contr ibut ions from p 
modes can be expressed as: 

To al low using an i den t i f i ca t i on  mathematical 
mde l  w i th  an m degrees o f  freedom, where 
m >> p, the vector t @ ( t ) l  i s  a r b i t r a r i l y  selected 

where ( x ( t ) l  f s  the measured response vector. 
Equation (1) can be wr i t t en  f o r  the same responses 
delayed At1 i n  time as: 

i=l 

By repeating these measurements vectors 
and { G I  f o r  2 r  t imes where r > m, t o  form the 
two 2m x 2r response matrices C41 and t i l . 
and computing a mat r ix  [A] where: 

{@I 

the modal parameters o f  the system under considera- 
t i o n  can be determined from the eigenvalue problem. 

For complete de ta i l s  on I T D  please r e f e r  t o  
references 3-1 1. 

Table 1 Ratios t o  fundamental o f  i d e n t i f i e d  frequencies f o r  
undamped simple pendulum 

Mode eo = 30° eo = 60' eo = goo eo = 120° 

(N) N fN'fl fN f N / f l  no. fN f N / f l  fN f N / f l  f 

1 0.9829 1.000 0.9318 1.000 0.8472 1.000 0.7284 1.000 
2 2.9846 3.037 2.7949 2.999 2.5417 3.000 2.1854 2.999 
3 4.9162 5.002 4.6747 5.017 4.2360 5.000 3.6415 4.999 
4 - - 6.5269 7.005 5.9334 7.004 5.0987 7.000 
5 - - - - - 6 5681 9.017 
6 - - - - - - 

Table 2 Ratios t o  fundamental of i d e n t i f i e d  frequencies f o r  
undamped spring-mass system 

Mode yo = 0.5 yo = 1.0 yo = 1.5 yo = 2.0 
no. 
(N) fN f N / f l  fN f N / f l  fN f N / f l  fN f N / f l  

1 1,1708 1.000 1.5691 1.000 2.0651 1.000 2.6032 1.000 
2 3.5124 3.000 4.7073 3.000 6.1953 3.300 7.8116 3.001 
3 5.8529 4.999 7.8456 5.000 10.3256 5.000 13.0204 5.002 
4 - - 10.9841 7.000 14.4605 7,002 18.2261 7.001 
5 - 23.4437 9.006 
6 - - - - - - - - - 
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Table 3 Ident i f ied  damping factors f o r  
undamped simple pendulum 

Damping factors* , si 
9 1 L 3 4 5 80 

30 0.00000 0.00065 0.00002 - - 
90 0.00006 0.00001 0.00000 0.00122 - 60 0.00001 0 OOOOO 0.00050 -0.00096 - 

120 0.00000 0.00002 0.00030 0.00866 0.00593 

A l l  theoret ical  damping factors were equal to  zero. 

runs f o r  optimum damping ident i f i ca t ion .  

* 
*The 1 i s ted  values were obtained from d i f f e r e n t  i d e n t i f i c a t i o n  

Table 4 h p l i t u d e s  o f  i d e n t i f i e d  harmonics f o r  undamped simple pendulum 
- 

I n i t i a l  amplitude 
€Ia (rad.) Ident i f ied  eo = al + e3 + e5 + e7 + e9 

Theory Iden t i f i ed  e3 

- 6  0.5236 0.5236 0.5244 x 10; -0.7474 x 10:; -0.1080 x lo-: - 
1.5708 1.5708 0.1594 x l o 1  -0.2396 x 10:; 0.6300 x 101, -0.1930 x 101, 
2.0944 2.0944 0.2158 x 10 -0.6697 x 10 0.3449 x 10 -0.2058 x 10 0.1156-x 

1.0472 1.0274 0.1054 x l o1  -0.6429 x 10 0.6942 x -0.2919 x - 

Table 5 Amplitudes o f  i den t i f i ed  harmonics f o r  undamped spring-mass system 

Iden t i f i ed  yo = y l  + y3 + y ~ ;  + yg 
I n i t i a l  amp1 i tude 

YO 

Theory Iden t i f i ed  Y l  y3 y7 

0.5000 0.5000 0.4942 x 10; 0.5697 x 10:: 0.6270 x - 
1.OOOO 1.0000 0.9741 x l o 1  0.2529 x 0.6399 x 10- i  0.1577 x ln-4 - 
1.5000 1.5000 0.1449 x l o 1  0.4913 x 10 0.1617 x 10- 0.6205 x 101; 
2.0000 2.0005 0.1924 x 10 0.7323 x 10- 0.29871 x l o - *  -0.30C6 x 10 0.7986-x 

Table 6 Theoretical and i d e n t i f i e d  
fundamntal frequency f o r  undamped 

simple pendulum 

fl ( H z )  

Theory Ident i  f i ed 000 

Table 7 Theoretical and iden t i f i ed  
fundamental frequency f o r  undamped 

spring-mass system 

fl (Hz)  

Theory Iden t i  f i ed 
YO 

30 0.9829 0.9829 
60 0.9318 0.9318 
90 0.8472 0.84!2 

120 0.7284 0.7284 

~ ~~ ~ ~~ 

0.5 1.1708 1 .1711 
1 .o 1 ,5691 1.5693 
1.5 2.0651 2.0650 
2.0 2.6032 2.6042 
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Table 8 i d e n t i f i e d  frequencies and 
damping f a c t o r s  f o r  simple pendulum 

Table 9 I d e n t i f i e d  frequencies and damping 
fac to rs  f o r  spring-mass system 

800 f (Hz)  

30 ,: 0.9996 
2.9186 

60 0.9398 
2.7712 

90 0.8678 
2.5698 

120 0.7714 
2.2955 

0.93 
3.50 

1.15 
2.89 

1.30 
2.60 

1.89 
4.67 

0.5 1.1542 0.76 
3.4240 2.11 

1 .o 1.5242 0.49 
4.5873 1.98 

1.5 1.9935 0.36 
6.0214 1.89 

2.0 2.5064 0.33 
7.5700 1.58 

Table 10 I d e n t i f i e d  frequencies and damping f a c t o r s  f o r  
t he  two-degree-of-freedom system 

0.3, 0.1 1 1.0185 0.95 
2 2.0359 0.99 

3.0, 1.0 1 2.2783 1.40 
2 4.0214 1.34 
3 5.7955 1.07 
4 a. 5792 0.65 
5 10.4157 1.47 
6 12.1253 1.60 

Theoret ica l  lii , .  r frequencies a r e  1.0 and 2.0 Hz and * 
damping f a c t o r s  are 1.0% f o r  t h e  two modes. 

Table 11 I d e n t i f i e d  quas i - l i nea r  mode shapes f o r  t he  two-degree-of-freedom system 

Mode no. Case 
(yo1 9 ~ 0 2 )  S ta t i on  1 2 3 4 5 6 

0.3, 0.1 1 - Amp1 0.1992 0.10156 
Pha. 0 0.21 0.23 

2 - Ampl. 0.1995 0.1014 
Pha.O 0.25 178.84 

3.0, 1.0 1 - Awl 2.0408 1.7412 0.0643 0.1191 0.0455 0.0578 

2 - Ampl;, 1.9648 1.8263 0.0828 0.1 121 0.0333 0.0547 

Pha.i -8.10 -29.30 -105.00 -71.94 -94.91 -126.47. 

Pha. -11.45 99.10 -1 54.79 -96.12 -35.31 78.94 
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I 

Fig. 1 Simpie pendulum. 

F i g .  2 Single-mass-spring 
system. 

r.il = id2 = 1 
3 F1 = F = 4n2(z + I ) + 0.04;:; 3 

F2 = 6 t 2 ( i  + 0.5 z') + 0 . 0 6 ~ l i  

( z  is displacement of restoring force element) 

Fig. 3 Two-degree-of-freedom system. 

30 

-: 20 

10 

0 1 2 3 

f I 

F i g .  5 Identified harmonics versus fundamental 
frequency f o r  spring-mass system. 

4 

~ ; l l , l , s . ,  . , . ,  , !  , , , , I  , , . .  

Amp 1 

Fig. 6 Theoretical and identified fundamental 
frequency o f  simpie pendulum. 

Fig. 4 Identified harmonics versus fundamental 
frequencies o f  simple pendulum. 
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Fig. 7 Ther re t i ca l  and i d e n t i f i e d  fundamental 
frequency o f  spri ng-mass system. 
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Fig. 8 O e t e n i n a n t  versus DOF of i d e n t i f i c a t i o n  
model f o r  simple pendulum. 

NMO 

Fig. 9 Determinants versus OOF of i d e n t i f i c a t i o n  
model f o r  spring-mass system. 
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